共查询到20条相似文献,搜索用时 11 毫秒
1.
从工程实用观点出发,引入考虑主流紊流度影响的经验关系式,对McNally程序的前驻点、层流区计算方法和转捩模型进行了改进;引入“紊流度粘性”和间歇因子的概念,并综合考虑压力梯度、紊流度和进、出口雷诺数等因素对转捩的影响。对STAN5程序的层流区和过渡区计算方法进行了改进,采用相似解方法计算前驻点区的流动和换热,作为STAN5程序的初始条件。用改进的程序,对C3x、MKⅡ、Turner、Daniels和VKI叶型,在多种工况下的二维外边界层流动和换热进行了计算研究,分析和比较了程序中积分法和差分法的特点,总结出一套适用于工程设计计算的方法和程序。 相似文献
2.
在原STAN5计算程序的基础上,进行了改造和完善,从而形成了一个可供工程应用的计算二维涡轮叶型换热系数的实用程序。对六种不同的涡轮导向叶片和工作叶片进行了不同进、出口雷诺数,马赫数以及不同压力梯度和主流紊流度条件下的19个工况的流动换热计算。与实验数据比较表明,本程序应用于涡轮叶片型面换热系数的计算是成功的。 相似文献
3.
本根据目前航空发动机涡轮气涡叶片的设计要求,在献^[1]的基础上,引入燃气热物性曲线拟合公式;考虑了主流紊流度对前驻点,层流区换热以及转捩的影响。 相似文献
4.
涡轮叶栅外换热系数计算 总被引:5,自引:1,他引:5
采用求解三维雷诺平均Navier-Stokes(N-S)方程和带转捩模型的二方程Shear stress transport(SST)湍流模型,完成了MARKⅡ,VKI两个高压涡轮导叶叶栅及一个VKI高压涡轮动叶叶栅的外换热系数计算.计算结果与试验数据的对比表明,发展的带转捩模型的数值方法明显地提高了外换热系数的计算精度. 相似文献
5.
6.
7.
密度比对涡轮叶片表面气膜冷却换热系数的影响 总被引:3,自引:1,他引:3
采用放大的叶片模型,利用大尺寸低速线性叶栅风洞进行试验,测量了涡轮工作叶片表面不同位置处气膜孔下游叶片表面的换热系数,研究了不同吹风比、密度比和雷诺数的影响。风洞试验段由3个叶片组成,其中中间的叶片为试验叶片。试验叶片表面上开有6排气膜孔,其中吸力面1排,前缘区3排,压力面2排。试验结果表明:密度比对叶片表面气膜孔下游换热系数有影响,以往采用空气作为主流及二次流,在低温差下进行试验,所获得的叶片表面气膜孔下游的换热系数在用于涡轮叶片气膜冷却的实际设计时,必须进行修正。 相似文献
8.
9.
在对某型涡扇发动机高压涡轮转子叶片冷却结构分析的基础上,建立了流动换热分析的气热耦合计算模型.采用通用流体力学计算软件完成了高压涡轮转子叶片复杂结构的内外流场和温度场的一体化计算,得到了涡轮叶并流动换热的数值计算结果,对其冷却结构的换热效果进行了分析,并对气热耦合计算在涡轮冷却叶片设计中的应用进行了分析和探讨。 相似文献
10.
本文用数值方法计算了无气膜冷却涡轮叶片上包括前驻点的整个型面上的换热系数。驻点区采用相似方程计算, 并用圆柱绕流近似表示驻点附近流场。较成功地模拟了边界层转捩和过渡区的换热情况。计算中考虑了来流湍流度的影响。 相似文献
11.
12.
某涡轮导向叶片换热实验与计算 总被引:1,自引:1,他引:1
针对某涡轮导向叶片,实验测量了光滑叶片表面的压力系数和速比系数,并使用瞬态液晶测量技术获得了叶片全表面传热系数分布.分别使用shear stress transport(SST),k-ω,k-ε和renormalization group(RNG)k-ε四种湍流模型模拟了相同结构尺寸的叶栅通道内的流动与换热,并与实验结果进行对比.结果表明:压力面压力系数沿弧长方向逐渐下降,吸力面上压力系数先快速下降达到最小值后缓慢上升(出现逆压梯度).叶栅通道和叶片表面附近气流流动结构的复杂性导致叶片表面传热系数分布较为复杂.4种湍流模型对压力系数和速比系数的计算结果相互差别不大,计算数据也比较接近实验值.关于叶片表面传热系数,SST模型计算结果分布规律与实验接近,而其他3种湍流模型都没有能模拟出吸力面边界层分离对换热的影响. 相似文献
13.
以双层壳型涡轮叶片内冷通道中旋流换热特性为研究对象,采用热膜法,对双层壳型冷却结构中的狭小受限通道中,旋流作用下换热特性的变化规律开展了细致的试验研究。重点分析了冷却空气的旋流作用对换热的强化增益效果。试验中通过改变冲击Re数(10 000~20 000),冲击间距和冲击孔直径之比H/D(0.35~1.7)等参数,研究了其对旋流的形成及内表面局部换热系数的影响规律。研究发现:由于双层壳型叶片内冷通道的空间受限,冷却空气在通道内形成了旋流结构,该旋流结构显著影响了内表面的局部换热系数并可以有效提高换热效果。研究结果表明:内表面局部换热系数对冲击间距和冲击孔直径之比H/D最为敏感,对于不同冲击Re数,存在一个最佳的H/D使得旋流换热增益效果达到最大(Re=10 000时,最佳H/D为0.95;Re=15 000,20 000,最佳H/D=0.63)。 相似文献
14.
为了提高涡轮叶片的耐温能力,针对涡轮叶片尾缘内冷复合通道提出两种新的隔板结构。通过实验研究了新结构与传统隔板结构对通道的换热和压力损失的规律。采用薄膜加热片作为加热器提供等热流边界条件。实验结果表明:新的隔板结构的设计可以明显增强通道换热的均匀性,其中带孔直隔板提高换热均匀性的同时,部分区域的局部换热能力有所下降,同时压力损失也有所降低;而对于波形隔板结构,部分区域的局部换热能力也有所下降,但平均换热增大。该结构在对换热进行改进的同时,也伴随着压力损失有所增大。实验结论可为大型发动机涡轮叶片的内部冷却结构优化设计提供基础依据。 相似文献
15.
高压涡轮转子叶片端面的流动与换热特性研究 总被引:2,自引:0,他引:2
通过数值计算,对高压涡轮转子叶片凹槽端面的流动与换热特性进行了初步研究,并与平板端面进行了比较.计算结果表明:叶尖间隙越小,凹槽的节流效果就越明显;转速对叶片端面换热系数的影响不显著;小间隙对叶片端面平均换热系数的影响较大. 相似文献
16.
本给出了复合式气冷涡轮叶片内冷气流量分配,温增和换热系数迭代求解方法和计算实例。并且,讨论了转动效应对冷气流动和换热的影响。它已成功地应用于高性能推进系统气冷叶片设计,而且,也可用于气冷涡轮叶片改型和膜底分析,验算。 相似文献
17.
18.
涡轮叶片冷却设计优化方法研究 总被引:2,自引:1,他引:2
针对某型发动机高压涡轮工作叶片,采用试验设计方法,通过对内腔边界条件的主效应分析,对涡轮叶片截面温度分布进行优化。同时,对影响叶片内腔不同流动与换热类型的冷却结构元件换热系数的几何参数进行敏度分析。最后通过综合优化,获得在原设计基础上的优化结果。结果表明,该方法可以把原设计的截面最大温差有效降低。另外,通过对涡轮叶片冷却设计优化方法的探索,还获得了影响叶片冷却设计结果的参数关系曲线,该方法及结果可在涡轮叶片冷却设计时参考使用。 相似文献
19.
20.
在使用工程计算方法对涡轮叶片温度场进行计算时,往往将叶片内流通道简化成光滑或带肋的换热管元件,容易忽略
各内流管段之间的影响,造成计算得到的叶片3维温度场与真实温度场存在较大差异。针对上述问题,为了提高对涡轮叶片3维
温度场模拟的准确度,对涡轮叶片内流通道的换热流动算法进行改进。考虑涡轮内部蜿蜒通道中弯转区和弯转效应2种因素对
涡轮内部流动换热的影响,使用试验得到的数据对2种因素影响区域的换热情况进行修正,利用修正后的算法对某工作叶片进行
温度场计算,并对修正前后叶片温度场进行了对比分析。结果表明:采用修正后算法得到的蜿蜒通道内的气体温度相较于修正前
算法得到的沿程升高更多,修正后算法求得的叶片整体平均温度降低,最大温差增大。 相似文献