共查询到12条相似文献,搜索用时 0 毫秒
1.
E K Jessberger 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1992,12(4):99-100
At the 28th Plenary Meeting of the Committee on Space Research (COSPAR) in The Hague, The Netherlands, there was on June 28, 1990, a session of commission MF.1 on Impact of Human Expeditions to Mars, in which, among others, the benefits of manned Mars missions for the geological survey of Mars were discussed. The present commentary does not intend to discuss the pros and cons of manned space flight or of Mars exploration at large, but will reiterate some of the points made in that discussion concerning the justification of manned versus automated Mars exploration in the context of geologic sciences. 相似文献
2.
G Horneck R Facius G Reitz P Rettberg C Baumstark-Khan R Gerzer 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2003,31(1):87-95
Human missions to Mars are planned to happen within this century. Activities associated therewith will interact with the environment of Mars in two reciprocal ways: (i) the mission needs to be protected from the natural environmental elements that can be harmful to human health, the equipment or to their operations; (ii) the specific natural environment of Mars should be protected so that it retains its value for scientific and other purposes. The following environmental elements need to be considered in order to protect humans and the equipment on the planetary surface: (i) cosmic ionizing radiation, (ii) solar particle events; (iii) solar ultraviolet radiation; (iv) reduced gravity; (v) thin atmosphere; (vi) extremes in temperatures and their fluctuations; and (vii) surface dust. In order to protect the planetary environment, the requirements for planetary protection as adopted by COSPAR for lander missions need to be revised in view of human presence on the planet. Landers carrying equipment for exobiological investigations require special consideration to reduce contamination by terrestrial microorganisms and organic matter to the greatest feasible extent. Records of human activities on the planet's surface should be maintained in sufficient detail that future scientific experimenters can determine whether environmental modifications have resulted from explorations. 相似文献
3.
A. Dominic Fortes Ian G. Wood David P. Dobson Paul F. Fewster 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2009
We describe the scientific case for and preliminary design of an instrument whose primary goal is to determine the chemistry (element abundance) and mineralogy (compound identity and abundance) of Titan’s surface using a combination of energy dispersive X-ray fluorescence spectroscopy (EDXRF) and X-ray diffraction (XRD). XRD is capable of identifying any crystalline substance present on Titan’s surface at relative abundances greater than ∼1 wt%, allowing unambiguous identification of, for example, structure I and II clathrates (even in the presence of ice), and various organic solids, which may include C2H2, C2H4, C4H2, HCN, CH3CN, HC3N, and C4N2). The XRF component of the instrument will obtain elemental abundances for 16 < Z < 60 with minimum detection limits better than 10 ppm (including detection of atmospheric noble gas isotopes), and may achieve detection limits of 0.01–1% for lighter elements down to Z = 6 (carbon). The instrument is well suited to integration with other analytical tools as part of a light-weight surface chemistry and mineralogy package. Although considerably less sensitive to elemental abundance than GC–MS (10−2 vs. 10−8) it is likely to be significantly lighter (<0.5 kg vs. 10 kg). 相似文献
4.
Y A Berkovich N M Krivobok Yu Ye Sinyak S O Smolyanina Yu I Grigoriev S Yu Romanov A S Guissenberg 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2004,34(7):1552-1557
In order to evaluate the effects of gravity on growing plants, we conducted ground based long-term experiments with dwarf wheat, cultivar Apogee and Chinese cabbage, cultivar Khibinskaya. The test crops had been grown in overhead position with HPS lamp below root module so gravity and light intensity gradients had been in opposite direction. Plants of the control crop grew in normal position under the same lamp. Both crops were grown on porous metallic membranes with stable -1 kPa matric potential on their surface. Results from these and other studies allowed us to examine the differences in growth and development of the plants as well as the root systems in relation to the value of the gravity force influence. Dry weight of the roots from test group was decreased in 2.5 times for wheat and in 6 times - at the Chinese cabbage, but shoot dry biomass was practically same for both test and control versions. A harvest index of the test plants increased substantially. The data shows, that development of the plants was essentially changed in microgravity. The experiments in the space greenhouse Svet aboard the Mir space station proved that it is possible to compensate the effects of weightlessness on higher plants by manipulating gradients of environmental parameters (i.e. photon flux, matric potential in the root zone, etc.). However, the average productivity of Svet concerning salad crops even in ground studies did not provide more than 14 g fresh biomass per day. This does not provide a sufficient level of supplemental nutrients to the crew of the ISS. A cylindrical design of a space plant growth chamber (SPGC) allows for maximal productivity in presence of very tight energy and volume limitations onboard the ISS and provides a number of operational advantages. Productivity from this type of SPGF with a 0.5 kW energy utilization when salad growing would provide approximately 100 g of edible biomass per day, which would almost satisfy requirements for a crew of two in vitamin C and carotene and partly vitamin B group as well as rough fiber. 相似文献
5.
G R Williams J T Lett 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1994,14(10):217-220
Losses of photoreceptor cells (rods) from the retinas of New Zealand white (NZW) rabbits were detectable within 2 years after localized acute irradiation of optic and proximal tissues with > or = 7 Gy of 530 MeV u-1 40Ar ions or > or = 2 Gy of 465 MeV u-1 56Fe ions in the Bragg plateau region of energy deposition. Those limits were determined only from an analysis of variance of dose groups because the shapes of the dose response curves at early post-irradiation times are not known, a concern being addressed by experiments in progress. Losses of photoreceptor cells for the period 0.5-2.5 years post-irradiation, determined by provisional linear regression analysis, were approximately 1.7% Gy-1 and 2.5% Gy-1 for 40Ar and 56Fe ions, respectively. 相似文献
6.
G E Scoon A Chicarro G H Schwehm F Spiero 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1995,15(3):261-272
The European Space Agency's studies of a Comet Nucleus Sample Return mission (ROSETTA) as its Planetary Cornerstone in its long-term programme 'Horizon 2000' and the Marsnet mission, a potential contribution of the Agency to an international network of surface stations on Mars, has revived the interest in the present state of Planetary Protection requirements. MARSNET was one of the four candidate missions selected in April 1991 for further Design Feasibility (Phase A) Studies. Furthermore, of all space agencies participating in planetary exploration activities only the United States National Aeronautics and Space Administration had a well established Planetary Protection Policy on Viking and other relevant planetary missions, whereas ESA is considering the feasibility and potential impact of a planetary protection policy on its Marsnet mission, within the framework of a tight budgetary envelope applicable to ESA's medium (M) class missions. This paper will discuss in general terms the impact of Planetary Protection measures, its implications for Marsnet and the issues arising from this for the implementation of the mission in ESA's scientific programme. 相似文献
7.
M. Cabane P. Coll C. Szopa G. Israël F. Raulin R. Sternberg P. Mahaffy A. Person C. Rodier R. Navarro-Gonzlez H. Niemann D. Harpold W. Brinckerhoff 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2004,33(12):2240-2245
Observation of Mars shows signs of a past Earth-like climate, and, in that case, there is no objection to the possible development of life, in the underground or at the surface, as in the terrestrial primitive biosphere. Sample analysis at Mars (SAM) is an experiment which may be proposed for atmospheric, ground and underground in situ measurements. One of its goals is to bring direct or indirect information on the possibility for life to have developed on Mars, and to detect traces of past or present biological activity. With this aim, it focuses on the detection of organic molecules: volatile organics are extracted from the sample by simple heating, whereas refractory molecules are made analyzable (i.e. volatile), using derivatization technique or fragmentation by pyrolysis. Gaseous mixtures thus obtained are analyzed by gas chromatography associated to mass spectrometry. Beyond organics, carbonates and other salts are associated to the dense and moist atmosphere necessary to the development of life, and might have formed and accumulated in some places on Mars. They represent another target for SAM. Heating of the samples allows the analysis of structural gases of these minerals (CO2 from carbonates, etc.), enabling to identify them. We also show, in this paper, that it may be possible to discriminate between abiotic minerals, and minerals (shells, etc.) created by living organisms. 相似文献
8.
9.
R J Bula W Zhou 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2000,26(2):247-252
A number of space-based experiments have been conducted to assess the impact of microgravity on plant growth and development. In general, these experiments did not identify any profound impact of microgravity on plant growth and development, though investigations to study seed development have indicated difficulty in plants completing their reproductive cycle. However, it was not clear whether the lack of seed production was due to gravity effects or some other environmental condition prevailing in the unit used for conducting the experiment. The ASTROCULTURE (TM) flight unit contains a totally enclosed plant chamber in which all the critically important environmental conditions are controlled. Normal wheat (Triticum aestivum L.) growth and development in the ASTROCULTURE (TM) flight unit was observed during a ground experiment conducted prior to the space experiment. Subsequent to the ground experiment, the flight unit was transported to MIR by STS-89, as part of the U.S. Shuttle/MIR program, in an attempt to determine if super dwarf wheat plants that were germinated in microgravity would grow normally and produce seeds. The experiment was initiated on-orbit after the flight unit was transferred from the Space Shuttle to MIR. The ASTROCULTURE (TM) flight unit performed nominally for the first 24 hours after the flight unit was activated, and then the unit stopped functioning abruptly. Since it was not possible to return the unit to nominal operation it was decided to terminate the experiment. On return of the flight unit, it was confirmed that the control computer of the ASTROCULTURE (TM) flight unit sustained a radiation hit that affected the control software embedded in the computer. This experience points out that at high orbital inclinations, such as that of MIR and that projected for the International Space Station, the danger of encountering harmful radiation effects are likely unless the electronic components of the flight hardware are resistant to such impacts. 相似文献
10.
Julio E. Valdivia-Silva Rafael Navarro-González Christopher McKay 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2009
TEGA, one of several instruments on board of the Phoenix Lander, performed differential scanning calorimetry and evolved gas analysis of soil samples and ice, collected from the surface and subsurface at a northern landing site on Mars. TEGA is a combination of a high temperature furnace and a mass spectrometer (MS) that was used to analyze samples delivered to the instrument via a robotic arm. The samples were heated at a programmed ramp rate up to 1000 °C. The power required for heating can be carefully and continuously monitored (scanning calorimetry). The evolved gases generated during the process can be analyzed with the evolved gas analyzer (a magnetic sector mass spectrometer) in order to determine the composition of gases released as a function of temperature. Our laboratory has developed a sample characterization method using a pyrolyzer integrated to a quadrupole mass spectrometer to support the interpretations of TEGA data. Here we examine the evolved gas properties of six types of hyperarid soils from the Pampas de La Joya in southern Peru (a possible analog to Mars), to which we have added with microorganisms (Salmonella typhimurium, Micrococcus luteus, and Candida albicans) in order to investigate the effect of the soil matrix on the TEGA response. Between 20 and 40 mg of soil, with or without ∼5 mg of lyophilized microorganism biomass (dry weight), were placed in the pyrolyzer and heated from room temperature to 1200 °C in 1 h at a heating rate of 20 °C/min. The volatiles released were transferred to a MS using helium as a carrier gas. The quadrupole MS was ran in scan mode from 10 to 200 m/z. In addition, ∼20 mg of each microorganism without a soil matrix were analyzed. As expected, there were significant differences in the gases released from microorganism samples with or without a soil matrix, under similar heating conditions. Furthermore, samples from the most arid environments had significant differences compared with less arid soils. Organic carbon released in the form of CO2 (ion 44 m/z) from microorganisms evolved at temperatures of ∼326.0 ± 19.5 °C, showing characteristic patterns for each one. Others ions such as 41, 78 and 91 m/z were also found. Interestingly, during the thermal process, the release of CO2 increased and ions previously found disappeared, demonstrating a high-oxidant activity in the soil matrix when it was subjected to high temperature. Finally, samples of soil show CO2 evolved up to 650 °C consistent with thermal decomposition of carbonates. These results indicate that organics mixed with these hyperarid soils are oxidized to CO2. Our results suggest the existence of at least two types of oxidants in these soils, a thermolabile oxidant which is highly oxidative and other thermostable oxidant which has a minor oxidative activity and that survives the heat-treatment. Furthermore, we find that the interaction of biomass added to soil samples gives a different set of breakdown gases than organics resident in the soil. The nature of oxidant(s) present in the soils from Pampas de La Joya is still unknown. 相似文献
11.
Anabel Alejandra Lamaro Alejandro Mariñelarena Sandra Edith Torrusio Silvia Estela Sala 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
Monitoring of warm distribution in water is fundamental to understand the performance and functioning of reservoirs and lakes. Surface water temperature is a key parameter in the physics of aquatic systems processes since it is closely related to the energy fluxes through the water–atmosphere interface. Remote sensing applied to water quality studies in inland waterbodies is a powerful tool that can provide additional information difficult to achieve by other means. The combination of good real-time coverage, spatial resolution and free availability of data makes Landsat system a proper alternative. Many papers have developed algorithms to retrieve surface temperature (principally, land surface temperature) from at-sensor and surface emissivity data. The aim of this study is to apply the single-channel generalized method (SCGM) developed by Jiménez-Muñoz and Sobrino (2003) for the estimation of water surface temperature from Landsat 7 ETM+ thermal bands. We consider a constant water emissivity value (0.9885) and we compare the results with radiative transfer classic method (RTM). 相似文献
12.
A. Buch R. Sternberg C. Szopa C. Freissinet C. Garnier El J. Bekri C. Rodier R. Navarro-González F. Raulin M. Cabane M. Stambouli D.P. Glavin P.R. Mahaffy 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2009
In the frame of the 2009 Mars Science Laboratory (MSL) mission a new sample preparation system (SPS) compatible with gas chromatography–mass spectrometry (GC–MS) has been developed for the in situ analysis of complex organic molecules in the Martian soil. The goal is to detect, if they exist, some of the key compounds that play an important role in life on Earth including carboxylic acids, amino acids and nucleobases. 相似文献