首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 421 毫秒
1.
朱宇博  荣吉利  宋乾强  张涛  吴志培 《宇航学报》2020,41(11):1393-1400
为研究铝蜂窝在动态异面压缩下的平均塑性坍塌应力,在铝蜂窝准静态压缩的理论研究基础上,考虑铝蜂窝应变率效应对材料力学性能的影响,采用Cowper Symonds模型,以基本折叠单元为研究对象,采用等效周长方法求取应变率,给出了两个动态异面压缩下铝蜂窝平均塑性坍塌应力的理论计算公式。落锤冲击试验结果与仿真结果显示,Tresca屈服准则下的动态平均塑性坍塌应力与试验及仿真结果的相关系数均在98%以上,验证了理论推导的正确性。本文给出的理论计算公式对研究动态冲击下铝蜂窝的异面压缩性能具有一定的工程指导意义。  相似文献   

2.
腿式着陆器缓冲材料缓冲特性及其表征方法研究   总被引:1,自引:0,他引:1  
为了研究适合腿式着陆器用缓冲器的缓冲材料,对8种不同规格的薄壁铝管,3种不同规格的铝蜂窝及4种不同规格的泡沫铝在准静态及冲击载荷作用下的压缩特性进行了试验研究,并得出了其相应的应力/能量一应变曲线图.通过对缓冲材料的应力-应变曲线图及压缩特性进行系统的研究分析,得到了5类缓冲材料缓冲特性的表征方法,这些表征方法可以全面地对不同缓冲材料的缓冲特性进行评价,以便指导腿式着陆器用缓冲器的设计.最后结合所提出的缓冲材料缓冲特性的表征方法,对所试验的薄壁铝管、铝蜂窝及泡沫铝这3类不同的缓冲材料的缓冲特性进行了总结,并得到了粗孔的名义压缩强度为0.14~0.15MPa的泡沫铝为在所试验的缓冲材料中,是最理想的腿式着陆器用缓冲材料.  相似文献   

3.
采用熔融沉积成型方法成形了连续碳纤维增强尼龙复合材料蜂窝芯材,并对不同测试方向的静态单轴压缩特性进行了表征分析,着重关注不同测试方向熔融沉积成形蜂窝芯材平面静态压缩破碎行为和能量吸收行为,并与纯聚合物基体进行对比。结果表明:X_1方向的压缩平台区域的力-位移曲线更加平滑稳定,且载荷值稍高于X_2方向,因此X_1方向更适用于能量吸收应用;此外,连续纤维的增强作用可使蜂窝芯材的平台载荷值得到明显提升。研究结果为连续纤维增强聚合物复合材料的空间增材制造提供理论基础。  相似文献   

4.
摘 要 本文采用白光数字散斑相关方法对煤在单轴压缩下变形破坏进行研究,定量的测出了煤的变形局部化带宽度。并通过应变梯度塑性理论,在屈服函数中引入应变梯度二阶项。采用Drucker-Prager准则解析得出了煤试件的变形局部化带宽度公式并根据试验确定煤的材料内部长度。  相似文献   

5.
基于复合材料力学基本理论,推导了Tsai-Hill准则、Hoffman准则和Tsai-Wu准则在平面问题下的一般表达式,在平面应力和应变状态下,得到复合材料中心裂纹板裂纹尖端塑性区的解析解.结果表明,基于Tsai-Wu准则得到的Ⅰ型、Ⅱ型和Ⅰ/Ⅱ复合型裂纹裂尖塑性区范围最小.平面应变状态下的裂尖塑性区范围小于平面应力状态下的裂尖塑性区范围.裂纹倾角β对复合材料裂尖塑性区范围和形状有明显影响,不同值得到的塑性区结果差别很大.不论是平面应力还是平面应变条件,裂纹尖端塑性区域都随着裂纹倾角的增大而增大.  相似文献   

6.
本文采用白光数字散斑相关方法对煤在单轴压缩下变形破坏进行研究,定量的测出了煤的变形局部化带宽度.并通过应变梯度塑性理论,在屈服函数中引入应变梯度二阶项.采用Drucker-Prager准则解析得出了煤试件的变形局部化带宽度公式并根据试验确定煤的材料内部长度.  相似文献   

7.
基于动态裂纹尖端应力场方程和Hill屈服准则,确定裂纹尖端塑性区的表达式,给出平面应力条件下Ⅰ/Ⅱ复合型动态裂纹尖端塑性区的解析解,分析了不同裂纹扩展速度下裂纹尖端塑性区的形状和大小.结果表明,Hill准则适用于正交异性材料和各向同性材料裂纹尖端塑性区的估算;裂纹扩展速度越快,裂纹尖端塑性区的范围越大,裂纹尖端塑性区的形状变化越大;Ⅰ型裂纹和Ⅱ型裂纹尖端塑性区的形状关于裂纹面对称;复合型裂纹尖端塑性区的范围和形状与m有关;对于同型裂纹,与正交异性材料相比,各向同性材料裂纹尖端塑性区的范围较大.  相似文献   

8.
圆球形粒子超高速撞击侵蚀过程的数值模拟   总被引:1,自引:0,他引:1  
本文利用数值方法模拟单个圆球形粒子超高速撞击所致侵蚀过程。提出了确定最终坑形的新准则——坑面唇边动压准则:当坑面唇边动压等于0.44倍静态屈服强度时的坑形为最终坑形。按此准则进行了大量计算,计算结果与实验结果、经验公式符合很好  相似文献   

9.
首先介绍了热管辐射器的计算及优化设计的理论,制作了两个铝蜂窝板热管辐射器单元试件,一个是热管预埋的,一个是热管外贴的。  相似文献   

10.
通过对薄壁高温合金蜂窝夹层结构XY面内进行拉伸、压缩宏观实验,并观测不同载荷形式下带有不同类型缺陷的试件的破坏模式和性能曲线,得到了结构在拉伸和压缩载荷下不同的破坏机理及不同缺陷对其力学性能的影响。研究结果表明,结构在XY面内拉伸时断裂均发生于缺陷附近区域且由缺陷尖端处开始扩展;而在XY面内压缩载荷作用下的失效模式主要分为结构屈曲和局部失稳,失效部位多发生在缺陷所在水平区域。结构屈曲为理想破坏模式,局部失稳导致结构抗压强度偏低。所获结论为结构的服役可靠性及其损伤容限体系的建立奠定了必要的实验基础。  相似文献   

11.
空间高稳定碳/碳蜂窝夹层结构制备及性能   总被引:1,自引:0,他引:1  
针对空间高稳定结构在极端环境下的灵敏度和稳定性需求,提出一种新型高稳定、高承载的轻质碳/碳(C/C)蜂窝夹层结构方案。碳/碳蜂窝夹层结构由化学气相渗透(CVI)致密化获得的整体碳/碳蜂窝和面板经胶粘剂粘接集成,通过评价蜂窝、面板以及夹层结构的内部质量、力学性能及热物理性能,展示了碳/碳蜂窝夹层结构在承载和尺度稳定性方面的优势。研究结果表明,典型特征碳/碳蜂窝承载性能稳定,平压强度>10 MPa,L/W向剪切强度>4 MPa,典型特征碳/碳蜂窝夹层结构热膨胀系数低,满足空间环境条件下面内热膨胀系数绝对值低于 1×10 -7 /℃的高稳定设计需求。  相似文献   

12.
纤维缠绕圆锥壳体设计分析   总被引:1,自引:0,他引:1  
以纤维缠绕结构的网格理论为基础,建立了纤维缠绕圆锥壳体在内压作用下的平衡方程。求解该方程,得到了纤维应力、纤维厚度和均衡缠绕角的解析解。对螺旋加环向缠绕,从圆锥大端到小端,纤维厚度和均衡缠绕角逐渐增大,纤维应力逐渐减小。利用最大应力强度准则,得到了单一螺旋缠绕及螺旋加环向缠绕圆锥壳体爆破压强的计算公式。为了使计算的爆破压强与实际结果相符合,纤维发挥强度的选取必须由模拟实验确定。  相似文献   

13.
通过对带有典型缺陷的薄壁高温合金蜂窝夹层结构进行侧拉伸和侧压缩、平压缩和三点弯曲等力学性能测试,得到了带有不同缺陷形式的结构在不同载荷形式下结构剩余强度随着缺陷尺寸增大的变化规律.得到的结论为薄壁高温合金蜂窝夹层结构的服役可靠性及其损伤容限体系的建立奠定了必要的实验研究基础.  相似文献   

14.
可重复使用运载器的耐坠毁缓冲装置的设计优化   总被引:1,自引:0,他引:1       下载免费PDF全文
雷波  张明  岳帅 《宇航学报》2019,40(9):996-1005
针对采用四腿式着陆支架的可重复使用运载器,提出一种油气-蜂窝两级缓冲的新型耐坠毁缓冲装置,常规油气缓冲器实现重复使用,危险工况下蜂窝缓冲器实现耐坠毁功能。建立了运载器着陆动力学模型,给出了运载器着陆的四种极限工况及铝蜂窝压溃载荷的求解方法,基于径向基(RBF)代理模型,采用多学科协同优化方法,对多工况下运载器两级缓冲装置设计参数进行了优化。结果表明,多学科协同优化方法有着较好的准确性,优化后运载器的最大过载和缓冲支柱载荷峰值均得到降低。最后,对比了单独油气缓冲器与两级耐坠毁缓冲装置下运载器的着陆响应,结果表明,使用两级耐坠毁缓冲装置在降低运载器最大着陆过载和缓冲支柱载荷峰值上有着较为明显的优势。  相似文献   

15.
Al/Mg阻抗梯度材料超高速撞击机理数值仿真研究   总被引:2,自引:1,他引:1  
文章采用数值仿真方法研究了Al/Mg阻抗梯度材料在超高速撞击下的响应过程,分析了冲击波在阻抗梯度材料中的传播规律,计算了撞击过程中的能量耗散情况,并与弹丸撞击铝合金靶的结果进行了比较。研究结果表明,相对于铝合金材料,Al/Mg阻抗梯度材料:1)延长了冲击波的传播时间,使峰值压力脉冲的比冲量提升了30%~50%;2)提高了塑性功和内能转化量,使不可逆功增加了10%。由此证明阻抗梯度材料的防护性能优于铝合金。  相似文献   

16.
晏飞 《火箭推进》2011,37(1):46-50,56
针对纤维缠绕/金属内衬复合材料气瓶结构复杂、参数多及设计分析困难等问题,提出了一种面向设计的纤维缠绕/金属内衬复合材料气瓶应力分析方法,并通过一个碳纤维缠绕/铝合金内衬柱形复合材料气瓶的应力分析,评估了分析方法的有效性.  相似文献   

17.
基于动力显式有限元方法,研究了整体壁板填料辅助滚弯成形分析方法。为了评估动力显式方法分析准静态问题的动态效应,引入系统动能和内能的比值作为动态影响误差,给出了确定虚拟加载速度的准则,建立了整体壁板填料辅助滚弯成形动力显式有限元模型,并进行了应力应变分析,最后对显式建模方法进行了验证。由此,为整体壁板结构参数和成形工艺参数设计与优化、成形失效分析等提供了有效的分析手段。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号