首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A model for production of episodic -ray event at interaction of a moving gas target with, a beam of relativistic particles is proposed. The typical duration of -ray emission is limited by the flight time of the target across the beam as well as by the time of destruction and/or expulsion of the target by luminous beam. The time-dependent radiation spectra of the expanding and moving gas cloud irradiated by the beam are calculated for the galactic binary systems Her X-1 and AE Aquarii which are reported as episodic -ray emitters at very high energies. Some predictions and observational tests for the model are discussed.On leave from Yerevan Physics Institute, Armenia  相似文献   

2.
A review of kinetic nonlinear theory for cosmic-ray (CR) acceleration and subsequent -ray production due to CR nuclear component in supernova remnants (SNRs) is presented. The correspondence of the expected spectrum and composition of CRs produced inside SNRs in the Galaxy with the experimental data is discussed. Possible explanations of negative results in searching high energy -ray emission from nearby SNRs are analyzed.  相似文献   

3.
《Space Science Reviews》1989,49(1-2):125-138
The Gamma-1 telescope has been developed through a collaboration of scientists in the USSR and France in order to conduct -ray astronomical observations within the energy range from 50 to 5000 MeV. The major characteristics of the telescope were established by Monte-Carlo simulations and calibrations made with the aid of electron and tagged -ray beams produced by an accelerator, and these have been found to be as follows: the effective area for photons coming along the instrument's axis varies from about 50 cm2 at E = 50 MeV to approximately 230 cm2 at E 300 MeV; the angular resolution (half opening of the cone embracing 68% events) is equal to 2.7° at E = 100 MeV, and 1.8° at E = 300 MeV; the energy resolution (FWHM) varies from 70% to 35% as the energy of the detected photons increases from 100 to 550 MeV; the telescope's field-of-view at the half-sensitivity level is 300–450 square degrees depending upon the spectrum of the detected radiation, and the event selection logic. Proceeding from the thus obtained characteristics it is demonstrated that a point source producing a photon flux J (E 100 MeV) = 3 × 10-7 cm-2 s-1, can be detected with a 5 significance by observing it during 106 s at the level of the Cygnus background, and a source having intensity J (E 100 MeV) = 10-6 cm-2 s-1 can be detected to within a mean square positional accuracy of about 15.  相似文献   

4.
Following our previously proposed technique, we have used the recent -ray observations of Mkr421 to place theoretically significant constraints on the magnitude of the intergalactic infrared radiation field (IIRF). Our 2 upper limits are consistent with normal IR production by stars and dust in galaxies. They rule out exotic mechanisms proposed to produce a larger IIRF. Although they are still subject to revision and are unconfirmed, the data on the spectrum of Mkr421 hint at a possible absorption cutoff which could be produced by an IIRF of the magnitude expected from stellar emission and reprocessing in galaxies. Using models for the low energy intergalactic photon spectrum from microwave to ultraviolet energies, we calculate the opacity of intergalactic space to -rays as a function of energy and redshift. These calculations indicate that the GeV -ray burst recently observed by the CGRO EGRET detector originates at a redshift less than 1.5.  相似文献   

5.
The purpose of this work is to study the various -ray-production mechanisms in solar flares and to calculate the flux, the spectrum, and the decay curves of radiation. Using the continuity equation and taking into account the energy losses for solar-flare-accelerated particles, we obtain the time-dependent particle distribution and thus the time behavior of the resulting rays. The important processes for producing rays in solar flares are found to be nonthermal electron bremsstrahlung, decay of neutral mesons, positron annihilation, neutron capture, and decay of excited nuclei. The results are applied to several known solar flares. For a large flare such as the class 3+ on February 23, 1956, continuous rays with energies up to 100 MeV from electron bremsstrahlung and neutral meson decays are observable at the orbit of the Earth by existing -ray detectors. Line rays from positron annihilation (0.51 MeV), neutron capture (2.23 MeV), and deexcitation of excited nuclei O16 (6.14 and 7.12 MeV) and C12 (4.43 MeV) are particularly strong and well above the continuous -ray background due to electron bremsstrahlung. These lines can be detected at the Earth.NASA-NRC Resident Research Associate.  相似文献   

6.
Cosmic-ray acceleration and transport is considered from the point of view of application to diffuse galactic -ray sources. As an introduction we review several source models, in particular supernovae exploding inside or near large interstellar clouds. The complex problem of cosmic ray transport in random electromagnetic fields is reduced to three cases which should be sufficient for practical purposes. As far as diffusive acceleration is concerned, apart from reviewing the basic physical principles, we point out the relation between shock acceleration and 2nd order Fermi acceleration, and the relative importance of the two processes around interstellar shock waves. For -ray source models the interaction of cosmic rays with dense clouds assumes great importance. Past discussions had been confined to static interactions of clouds with the ambient medium in the sense that no large scale mass motions in the ambient interstellar medium were considered. The well-known result then is that down to some tens of MeV or less, cosmic-ray nucleons should freely penetrate molecular clouds of typical masses and sizes. The self-exclusion of very low energy nucleons however may affect electron transport with consequences for the Bremsstrahlung -luminosity of such clouds.In this paper we consider also the dynamical interaction of dense clouds with a surrounding hot interstellar medium. Through cloud evaporation and accretion there exist mass flows in the cloud surroundings. We argue that in the case of (small) cloud evaporation the galactic cosmic rays will be essentially excluded from the clouds. The dynamic effects of cosmic rays on the flow should be minor in this case. For the opposite case of gas accretion onto (large) clouds, cosmic-ray effects on the flow will in general be large, limiting the cosmic-ray compression inside the cloud to dynamic pressure equilibrium. This should have a number of interesting and new consequences for -ray astronomy. A first, qualitative discussion is given in the last section.Proceedings of the XVIII General Assembly of the IAU: Galactic Astrophysics and Gamma-Ray Astronomy, held at Patras, Greece, 19 August 1982.  相似文献   

7.
Jetzer  Ph. 《Space Science Reviews》2002,100(1-4):117-127
The nature of the dark matter in the halo of our galaxy is still largely unknown. The microlensing events found so far towards the Large Magellanic Cloud suggest that at most about 20% of the halo dark matter is in form of MACHOs (Massive Astrophysical Compact Halo Objects). The dark matter could also, at least partially, be made of cold molecular clouds (mainly H2). We proposed a model for baryonic dark matter, according to which dark clusters of brown dwarfs and cold self-gravitating H2 clouds populate the outer galactic halo. A signature would be a diffuse -ray emission from the galactic halo. Basically, cosmic-ray protons in the galactic halo scatter on the clouds clumped into dark clusters, giving rise to a -ray flux. An analysis of EGRET data has led to the discovery of a statistically significant diffuse -ray emission from the galactic halo, which turns out to be in remarkably good agreement with our prediction.  相似文献   

8.
It is argued that the high-energy X-ray and -ray emission from flaring blazars is beamed radiation from the relativistic jet supporting the relativistic beaming hypothesis and the unified scenario for AGNs. Most probably the high-energy emission results from inverse Compton scattering by relativistic electrons and positrons in the jet of radiation originating external to the jet plus pair annihilation radiation from the jet. Future positive TeV detections of EGRET AGN sources will be decisive to identify the prominent target photon radiation field. Direct -ray production by energetic hadrons is not important for the flaring phase in -ray blazars, but the acceleration of energetic hadrons during the quiescent phase of AGNs is decisive as the source of secondary electrons and positrons through photo-pair and photo-pion production. Injection of ultrahigh energy secondary electrons and positrons into a stochastic quasilinear acceleration scheme during the quiescent AGN phase leads to cooling electron-positron distribution functions with a strong cut-off at low but relativistic energy that under certain local conditions may trigger a plasma instability that gives rise to an explosive event and the flaring -ray phase.  相似文献   

9.
During a balloon flight of the MISO telescope on the 30th September 1979, the Seyfert galaxies NGC 4151 and MGC 8-11-11 were studied in the hard X-ray range (EX > 20 keV) and low-energy -ray range up to 19 MeV. An emission at the 4.5 level above 20 keV (4 above 260 keV) was detected in the direction of NGC 4151. -ray emission at the 3.9 level above 90 keV was also observed from the direction of MCG 8-11-11. The emission photon spectrum shows a high-energy cutoff at about 3 MeV. A large amount of the observed low-energy -ray diffuse background could be produced by a few percent of the X-ray emitting Seyfert galaxies having a -ray luminosity comparable to that observed from the regions of NGC 4151 or MCG 8-11-11.  相似文献   

10.
-ray astronomy is the study of the most energetic photons originating in our Galaxy and beyond, and therefore, provides the most direct means of studying the largest transfers of energy occurring in astrophysical processes. The first certain detection of celestial-rays came from a satellite experiment flown on OSO-III (Kraushaaret al., 1972); more recently two second generation spark chamber-ray telescopes, flown on the SAS-2 (Fichtelet al., 1975) and COS-B (Bennettet al., 1974) satellites, are now obtaining more detailed results on the high energy celestial radiation causing-ray astronomy to move from the discovery phase to the exploratory phase. The most striking feature of the celestial sphere when viewed in the frequency range of-rays is the emission from the galactic plane, which is particularly intense in the galactic longitudinal region from 300° to 50°. The longitudinal and latitudinal distributions are generally correlated with galactic structural features and when studied in detail suggest a non-uniform distribution of cosmic rays in the galaxy. Several point-ray sources have now been observed, including four radio pulsars. This last result is particularly striking since only one radio pulsar has been seen at either optical or X-ray frequencies. Nuclear-ray lines have been seen from the Sun during a large solar flare and future satellite experiments are planned to search for-ray lines from supernovae and their remnants. A general apparently diffuse flux of-rays has also been seen whose energy spectrum has interesting implications; however, in view of the possible contribution of point sources and the observation of galactic features such as Gould's belt, its interpretation must await-ray experiments with finer spatial and energy resolution, as well as greater sensitivity. Instruments with much greater sensitivity and improved energy and angular resolution are now available and will greatly enhance our understanding of high energy processes in astrophysics, especially in view of the high penetrating power of-rays, which for example permit them to reach the solar system from the far side of the galaxy essentially unattenuated.  相似文献   

11.
High energy -rays from individual giant molecular clouds contain unique information about the hidden sites of acceleration of galactic cosmic rays, and provide a feasible method for study of propagation of cosmic rays in the galactic disk on scales 100 pc. I discuss the spectral features of 0-decay -radiation from clouds/targets located in proximity of relatively young proton accelerators, and speculate that such `accelerator+target systems in our Galaxy can be responsible for a subset of unidentified EGRET sources. Also, I argue that the recent observations of high energy -rays from the Orion complex contain evidence that the level of the `sea of galactic cosmic rays may differ significantly from the flux and the spectrum of local (directly detected) particles.  相似文献   

12.
It is commonly accepted that candidates for very high energy -ray sources are neutron stars, binary systems, black holes etc. Close binary systems containing a normal hot star and a neutron star (or a black hole) form an important class of very high energy -ray sources. Such systems are variable in any region of the electromagnetic spectrum and they enable us to study various stages of stellar evolution, accretion processes, mechanisms of particle acceleration, etc. Phenomena connected with this class of very high energy -ray sources are discussed. Particular emphasis has been placed on the TeV energy region.  相似文献   

13.
The Transient Gamma-Ray Spectrometer (TGRS) to be flown aboard the WIND spacecraft is primarily designed to perform high resolution spectroscopy of transient -ray events, such as cosmic -ray bursts and solar flares over the energy range 25 keV to 8.2 MeV with an expected spectroscopic resolution of 3 keV at 1 MeV. The detector itself consists of a 215 cm3 high purityn-type Ge crystal kept at cryogenic temperatures by a passive radiative cooler. The geometric field of view defined by the cooler is 1.8 steradian. To avoid continuous triggers by soft solar events, a thin BeCu Sun-shield around the sides of the cooler has been provided. A passive Mo/Pb occulter, which modulates signals from within ±5° of the ecliptic plane at the spacecraft spin frequency, is used to identify and study solar flares, as well as emission from the galactic plane and center. Thus, in addition to transient event measurements, the instrument will allow the search for possible diffuse background lines and monitor the 511 keV positron annihilation radiation from the galactic center. In order to handle the typically large burst count rates, which can be in excess of 100 kHz, burst data are stored directly in an onboard 2.75 Mbit burst memory with an absolute timing accuracy of ±1.5 ms after ground processing. The memory is capable of storing the entire spectral data set of all but the largest bursts. WIND is scheduled to be launched on a Delta II launch vehicle from Cape Canaveral on November 1, 1994. After injection into a phasing orbit, the spacecraft will execute a double lunar swing-by before being moved into a controlled halo orbit about theL1 Lagrangian point (250R e towards the Sun). This will provide a 5 light-second light travel time with which to triangulate gamma-ray burst sources with Earth-orbiting systems, such as those on-board the Gamma-Ray Observatory (GRO). The response of instrument to transient -ray events such as GRB's and solar flares will be presented as well as the expected response to steady state point sources and galactic center line emission.  相似文献   

14.
The modern state of gamma-ray astronomy is reviewed, the paper being mainly devoted to the theoretical models that describe generation of gamma-ray emission under astrophysical conditions. Basic information on the processes of generation and absorption of gamma-rays, as well as the results of observations for various gamma-ray photon energies are reported.In the region of soft gamma-ray emission (i.e., for energies less than tens of MeV), where emission in gamma-ray lines dominates, we also discuss the nature of gamma-ray bursts, the origin of gamma-ray emission from the galactic centre, etc.Discrete sources and, in particular, the mysterious source Cyg X-3 are discussed in the region of very high (E > 1012 eV) and ultra-high (E > 1015 eV) energy gamma-ray emission.A larger portion of the review is devoted to the analysis of cosmic-ray origin on the basis of the available gamma-ray data in the region from several tens of MeV to several GeV. The peculiarity of this energy range is, in particular, in the fact that the diffuse galactic emission was observed mainly there. We also discuss the problem of determination of the cosmic-ray density gradient from the gamma-ray data.The origin of high-latitude gamma-ray emission, the problem of galactic gamma-ray halo, etc., are discussed.The theoretical models explaining the nature of unidentified gamma-ray sources, as well as the results of measurements and theoretical estimations of a gamma-ray flux from SN1987A are analysed.List of Notations m electron mass, m = 9.108 × 10–28 g, - M proton mass, M = 1.672 × 10–24 g, - e electron charge, e = 4.803 × 10–10 CGS - c velocity of light, c = 2.9979 × 1010 cm s–1, - k Boltzmann constant, k = 1.380 × 10–16 erg grad–1, - e electron - p proton - gamma-ray photon - p antiproton - 0 0-meson - -lepton - e + positron - r, , x radio-frequency, gamma-ray, and X-ray emission bands - E total energy of a particle - E k kinetic energy - p particle momentum - spectral index for particles - spectral index for emission - n particle density (concentration) - H magnetic field strength - T temperature - ph energy of low-energy photons - emission frequency - r H Larmor radius of relativistic particles - k wave number - , z cylindric coordinates, in this case the coordinate (radius) along the galactic disk, z perpendicular to the galactic disk - M solar mass, M = 1.99 × 1033 g.  相似文献   

15.
The current situation with the cosmological model and fundamental constants is briefly reviewed. Here, we concentrate on evolutionary effects of large-scale structure formation, in particular, the relationship with the quasar distribution and dynamics is discussed. We argue that groups of bright quasars with few or more than dozen of members within regions l LS(100–150)h –1 Mpc found atz<2 may belong to concentrations of young rich clusters of galaxies, and thus be distant Great Attractors like the local GA or the Shapley concentration. These early large-scale galactic structures (i) provide a natural way to bias the distribution of Abell clusters, and (ii) suggest that the spectrum of primordial density perturbations is nearly flat on scales encompassing both the cluster and GAs,l=k –1(10,100)h –1 Mpc: k 2 k 3 P(k) k , =1 –0.4 +0.6 , whereP(k) is the power spectrum of density perturbations.  相似文献   

16.
I summarize the results of recent research on the structure and particle acceleration properties of relativistic shock waves in which the magnetic field is transverse to the flow direction in the upstream medium, and whose composition is primarily electrons and positrons with an admixture of heavy ions. Shocks which contain heavy ions that are a minority constituent by number but which carry most of the energy density in the upstream medium put 20% of the flow energy into a nonthermal population of pairs downstream, whose distribution in energy space is N(E) E -2, where N(E)dE is the number of particles with energy between E and E+dE. Synchrotron maser activity in the shock front, stimulated by the quasi-coherent gyration of the whole particle population as the plasma flowing into the shock reflects from the magnetic field in the shock front, provides the mechanism of thermalization and non-thermal particle acceleration. The maximum energy achievable by the pairs is ± m ± c 2 = m i c 2 1/Z i, where 1 is the Lorentz factor of the upstream flow and Z i is the atomic number of the ions. The shock's spatial structure contains a series of overshoots in the magnetic field, regions where the gyrating heavy ions compress the magnetic field to levels in excess of the eventual downstream value. These overshoots provide a new interpretation of the structure of the inner regions of the Crab Nebula, in particular of the wisps, surface brightness enhancements near the pulsar. The wisps appear brighter because the small Larmor radius pairs are compressed and radiate more efficiently in the regions of more intense magnetic field. This interpretation suggests that the structure of the shock terminating the pulsar's wind in the Crab Nebula is spatially resolved, and allows one to measure 1 4 × 106, the upstream magnetic field B 1 to be 3 × 10-5 Gauss, as well as to show that the total ion flow is 3 × 1034 elementary charges/sec, in good agreement with the total current flow predicted by the early Goldreich and Julian (1969) model. The total pair outflow is shown to be about 5 × 1037 pairs per second, in good agreement with the particle flux required to explain the nebular X—ray source.The energetics of particle acceleration within the magnetospheres of rotation powered pulsars and the consequences for pulsed gamma ray emission are also briefly discussed. The gamma ray luminosity above 100 MeV is shown to scale in proportion to R 1/2 , as is in accord with some of the simplest ideas about polar cap models. Models based on acceleration in the outer magnetosphere are also briefly discussed.  相似文献   

17.
A model for the emission processes causing rapid variability (less than one day) in active galactic nuclei is developed. Relativistic electron beams escape from reconnection sheets in coronae of accretion disks and excite plasma turbulence with a typical frequency , which depends on the electron number densityn (see also the contribution by R. van Oss). The finite lengths of different beams emerging from different reconnection sheets allows that the waves arecoherently scattered to frequencies 2pe. For Lorentz factors 103 and densities typical for disk coronaen106 cm –3 (derived from iron line observations) one easily reaches the optical, frequency range. The time scale of the variability is then caused by the relaxation of the electron beams. Likewise, this model explains the very rapid variability in the X-ray (less than 10 minutes) by changing the parameters slightly. According to this scenario the higher the variable frequency is, the closer to the central black hole it should originate.  相似文献   

18.
Summary Using values of d, min, and max that Van Riper (1978) has found most promising for a hydrodynamic envelope ejection, we have shown that even a small amount of rotation in the initial core can stop its collapse before nuclear densities are reached. We expected i > 0.02 to produce significant deviations from a spherically symmetric collapse, but have found that i as much as ten times smaller than this will not allow the core to reach densities as high as in the spherical collapse. In no case, however, does the core flatten very much, nor does the value of become very large. Low final 's preclude the formation of an axisymmetric torus. They also indicate that deformation of an iron core into a triaxial configuration or fragmentation of the core during its collapse is an extremely unlikely event. (Note: Classically, must exceed 0.27 before a dynamic instability to non-axisymmetric perturbations is encountered.)The small degree of flattening of the core also suggests that the reduced moment of inertia I of the core will always be relatively small in magnitude and hence that the third time derivative of I, which is proportional to the energy emitted in gravity wave radiation, will not be very significant. Numerically calculated estimates of I- during some of these model evolutions supports this suspicion. If the min and used here are found to be realistic values after the detailed physics of the core collapse is well understood, it is clear that gravitational radiation from a core collapse will be difficult to measure.Finally, we should point out that it is the relatively large values of Ymin (near 4/3) combined with values of d near unity that (a) prevented the core from flattening significantly in these models and (b) prevented the core from reaching high configurations. If realistic values of either one (or both) of these parameters are found to be much smaller in more complete models of the core collapse, then the core will have to become flatter (and denser) before pressure gradients will support it along the rotation axis. All of the conclusions drawn here would be modified accordingly under those circumstances. It should also be noted that in general relativistic models, the critical for spherical collapse is somewhat larger than 4/3 (Van Riper, 1979). Therefore, we predict that when fully general relativistic core collapses are performed including rotation, a given choice of min and i will produce a slightly flatter and slightly denser core than the corresponding model that has been presented here.  相似文献   

19.
There is a warm tenuous partially ionized cloud (T104 K,n(HI)0.1 cm–3,n(Hii 0.22–0.44 cm–3) surrounding the solar system which regulates the environment of the solar system, determines the structure of the heliopause region, and feeds neutral interstellar gas into the inner solar system. The velocity (V–20 km s–1 froml335°,b0° in the local standard of rest) and enhanced Caii and Feii abundances of this cloud suggest an origin as evaporated gas from cloud surfaces in the Scorpius-Centaurus Association. Although the soft X-ray emission attributed to the Local Bubble is enigmatic, optical and ultraviolet data are consistent with bubble formation caused by star formation epochs in the Scorpius-Centaurus Association as regulated by the nearby spiral arm configuration. The cloud surrounding the solar system (the local fluff) appears to be the leading region of an expanding interstellar structure (the squall line) which contains a magnetic field causing polarization of the light of nearby stars, and also absorption features in nearby upwind stars. The velocity vectors of the solar system and local fluff are perpendicular in the local standard of rest. Combining this information with the low column densities seen towards Sirius in the anti-apex direction, and the assumption that the cloud velocity vector is parallel to the surface normal, suggests that the Sun entered the local fluff within the historical past (less than 10 000 years ago) and is skimming the surface of the cloud. Comparison of magnesium absorption lines towards Sirius and anomalous cosmic-ray data suggest the local fluff is in ionization equilibrium.Reason has moons, but moons not hers, Lie mirror'd on her sea, Confounding her astronomers, But, O! delighting me.Ralph Hodgson  相似文献   

20.
Magnetic field experiment for Voyagers 1 and 2   总被引:1,自引:1,他引:0  
The magnetic field experiment to be carried on the Voyager 1 and 2 missions consists of dual low field (LFM) and high field magnetometer (HFM) systems. The dual systems provide greater reliability and, in the case of the LFM's, permit the separation of spacecraft magnetic fields from the ambient fields. Additional reliability is achieved through electronics redundancy. The wide dynamic ranges of ± 0.5 G for the LFM's and ± 20 G for the HFM's, low quantization uncertainty of ± 0.002 ( = 10–5 G) in the most sensitive (± 8 ) LFM range, low sensor RMS noise level of 0.006 , and use of data compaction schemes to optimize the experiment information rate all combine to permit the study of a broad spectrum of phenomena during the mission. Objectives include the study of planetary fields at Jupiter, Saturn, and possibly Uranus; satellites of these planets; solar wind and satellite interactions with the planetary fields; and the large-scale structure and microscale characteristics of the interplanetary magnetic, field. The interstellar field may also be measured.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号