首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 343 毫秒
1.
变结构燃烧室是提高宽范围工作火箭基组合循环(Rocket-Based Combined-Cycle,RBCC)发动机性能的有效途径之一,本文旨在通过全流道三维数值模拟的方法研究变结构RBCC发动机在低来流马赫数条件下燃烧室与进排气匹配状况,以及研究采用变结构燃烧室进行亚燃模态可靠燃烧组织的可行性。针对Ma3来流,研究了火箭冲压和纯冲压燃烧模式下的发动机性能,并实现了燃烧室工作模式的转变。通过本文的研究工作得到以下结论:(1)在火箭冲压工作模式下,一次火箭小流量工作能够提高二次燃料的燃烧效率,冲压燃烧室比冲性能较优,燃烧室与进排气能够匹配工作。(2)燃烧室工作在火箭冲压模式时,采用燃料支板集中喷注燃料的性能优于隔离段和燃料支板分散喷注时性能;发动机工作在纯冲压模式时,燃烧效率将会下降,并且发动机冲压比冲比火箭冲压工作模式下降10.2%,全流道比冲则上升14.5%。  相似文献   

2.
针对支板喷注煤油和一次火箭引导燃烧的RBCC发动机,在亚燃模态下的高效燃烧组织和性能开展了实验研究和数值分析.实验验证了在亚燃模态低来流总温条件下,使用小流量富燃一次火箭产生的高温射流作为引导火焰,可以实现支板喷注二次燃料的可靠点火和高效稳定燃烧.通过数值模拟获得了燃烧室的详细流场特征和燃烧组织细节,分析表明支板后方集中的燃料热释放可形成扩张燃烧室流道中的“热力壅塞”;通过热力喉道的控制,实现了在直扩流道内的高效燃烧.研究表明:发动机在亚燃模态下燃烧组织应尽可能地使热力喉道处于燃烧室较后位置,使燃料在燃烧室高压区内充分燃烧释热,从而提高其燃烧效率.论文还研究了燃料支板喷注位置的影响,进一步开展RBCC发动机亚燃模态性能的优化.  相似文献   

3.
超燃冲压发动机流量匹配机理   总被引:1,自引:0,他引:1  
采用基于集总参数方程的燃烧室性能计算模型,辅以临界面积法,应用于隔离段和燃烧室的一维流场计算,实现了双模态超燃冲压发动机各种模态下的隔离段和燃烧室的流量匹配计算,并分析了流量匹配工作机理.结果表明:在未分离超燃模态与分离超燃模态下,增加燃烧室供油流量,隔离段和燃烧室流量匹配是通过流道中的喉道处马赫数降低来实现的;在跨燃模态与亚燃模态下,增加燃烧室供油流量,流量匹配主要是通过提高燃烧室流道中热力喉道处的总压来实现的.   相似文献   

4.
固体火箭超燃冲压发动机燃烧性能影响因素研究   总被引:1,自引:1,他引:0       下载免费PDF全文
为了获得以飞行马赫数5.5巡航工作的固体火箭超燃冲压发动机燃烧性能影响因素,开展了地面直连实验和数值模拟研究。利用数值手段研究了固体燃气喷注方式、扰流装置的形式以及燃烧室扩张比等因素对燃烧室性能的影响规律,获得了高燃烧效率(≥90%)的垂直喷注式发动机燃烧室构型。研究表明:1)垂直喷注方式能增强富燃燃气与空气的掺混效果,颗粒相的燃烧效率较中心支板式双火箭燃烧室构型提高了25%;2)对比不同级数的扰流装置对发动机性能影响,同时考虑扰流装置热防护问题和发动机结构复杂程度,双级扰流装置的扰流形式增强效果较优,颗粒相的燃烧效率较单级扰流装置的燃烧室构型方案提高了26%;3)对比不同燃烧室扩张比对发动机性能影响,扩张比1.6的燃烧室构型方案颗粒相的燃烧效率为95%。综上所述,本文优化得到了垂直喷注方式、双级扰流装置以及燃烧室扩张比为1.6的高燃烧效率的发动机燃烧室构型。  相似文献   

5.
针对RBCC发动机亚燃模态进行主动冷却的情况下,煤油发生气化后喷入燃烧室的燃烧组织开展研究。在亚燃模态低来流总温条件下,使用小流量富燃一次火箭高温射流作为引导火焰可以实现支板喷注二次燃料的可靠点火和稳定燃烧,当煤油喷注前加热到气化/超临界态时,燃烧室最高压力相比于室温液态煤油提高约10%左右。当关闭一次火箭后,利用凹腔成功实现火焰稳定,而使用室温液态煤油喷注时,凹腔内无法实现火焰稳定。通过数值模拟获得了不同喷注方案的燃烧室燃烧流场特征和燃烧组织过程,为进一步优化燃烧室的性能提供依据。结果分析表明通过合理布置燃料支板喷注位置,由燃料支板下游集中的燃料热释放使得气流在扩张燃烧室构型中实现"热力壅塞",通过燃料分配实现燃烧室内合理的燃烧释热分布,使RBCC发动机亚燃模态完成高效燃烧组织。  相似文献   

6.
在飞行马赫数Ma=6,总当量比为1.0条件下,采用三维数值模拟研究了不同喷注位置煤油当量比分布对双凹腔圆形发动机推力性能和壁面热流的影响。喷注位置包括支板壁面喷注K1,隔离段出口壁面喷注K2,第一凹腔尾缘壁面喷注K3以及第一扩张段壁面喷注K4。结果表明,K1注油当量比大小直接影响燃烧室内的燃烧模态和流道中心燃烧。为了保证发动机推力性能,K1注油须达到一定量,促使流道燃烧处于亚燃模态,且流道内具有较强的中心燃烧。为优化发动机壁面热流环境,剩余燃料需要在K2,K3和K4分散注入。K2和K3注油当量比大小同时影响第一凹腔燃烧性能,其中K2注油当量比降低,推力性能下降,但壁面热流性能提高,而适当增加K3喷注煤油,有利于提高推力性能。增加K4注油,第二凹腔及其之后流道区域燃烧增强,发动机推力性能和热流性能均提高。通过分析各注油位不同当量比分布对发动机力热性能的影响规律,最终获得了力热性能较优的注油当量比分配方案,此时K1~K4注油当量比大小依次为0.6,0.1,0.1,0.2。  相似文献   

7.
李季  田野  钟富宇  杨顺华 《推进技术》2019,40(12):2702-2709
为了解边界层抽吸对超燃冲压发动机流场的影响,采用风洞试验和数值计算对隔离段激波串特性以及燃烧室燃烧特性进行了研究。结果表明,在发动机入口马赫数2.0,总温950K,总压0.82MPa的来流条件下,当量比为0.18先锋氢气与不同当量比煤油共同燃烧呈不稳定状态,激波串在隔离段内前后振荡传播。当煤油当量比为0.29时,激波串振荡前缘远离抽吸位置,边界层抽吸对发动机流场基本没有影响。随着煤油当量比逐渐增大,激波串前缘位置到达抽吸区附近,边界层抽吸开始产生影响,改变了隔离段内的激波串动态演化过程、形态结构以及位置分布,同时有效提高了隔离段抗反压特性,使得煤油最大当量比可以由0.38增大至0.42。此外,边界层抽吸对发动机内的亚燃/超燃区域分布也会产生影响。  相似文献   

8.
RBCC发动机亚燃模态一次火箭引导燃烧的实验   总被引:3,自引:0,他引:3  
针对使用液体煤油燃料(JP-10)的火箭基组合动力循环(RBCC)发动机在亚燃模态下使用一次火箭作为引导的燃烧组织开展了实验研究.实验在低来流总温条件下,使用小流量一次火箭羽流作为引导火焰可以实现液体煤油的可靠点火和稳定燃烧,并在扩张燃烧室中实现“热力壅塞”,从而完成RBCC发动机亚燃模态的高效燃烧.在目前发动机燃烧室构型下,通过一系列的发动机壁面压力分布曲线和推力增益的比较,研究了凹腔,支板及壁面喷注位置对发动机性能的影响.实验的结果表明:在一次火箭的下游使用支板喷注器可以使得燃料较容易的分布在主流中,并且在一次火焰羽流的引导下可以实现稳定高效的燃烧.支板喷注器的位置对于发动机的性能有很大的影响,在凹腔前壁面横向喷注燃料,有利于RBCC发动机燃烧性能的提升.为了获得较优的发动机亚燃模态性能,需要进一步对燃料的喷注策略开展优化研究.   相似文献   

9.
陈军  柳森  刘卫东  白菡尘 《推进技术》2017,38(11):2422-2430
为系统掌握燃烧室入口参数对双模态冲压发动机性能潜力的影响,采用双模态冲压发动机燃烧室工作过程的一维分析方法,在飞行马赫数为6的不同燃烧室工作工况(即不同特征马赫数Mac)条件下,保持进气道捕获流量不变,研究了燃烧室入口马赫数Main和总压恢复系数σin对性能潜力(燃料比冲Isp,f)的影响。获得的数据表明,冲压发动机的性能潜力受燃烧室入口马赫数和总压恢复系数两者的综合影响,燃烧室入口马赫数越低、总压恢复系数越高,发动机性能潜力越大;在常见的燃烧室入口参数范围内(入口马赫数∈[2.4 3.5],入口总压恢复系数∈[0.3 0.7]),入口马赫数每减小0.1,燃料比冲增加约1.1%~1.8%,入口总压恢复系数越小,影响程度越大;入口总压恢复系数每增大0.1,燃料比冲增大约2.4%~4.0%,入口马赫数越大影响程度越大;存在燃烧室入口条件不同,但是发动机的比冲性能潜力相同的情况。对燃烧室分段过程的损失分析表明,在入口为超声速、加热段为亚声速(特征马赫数不大于1)工况条件下,入口马赫数增加导致燃烧区前激波串损失增大,是比冲性能降低的主要原因;燃烧室特征马赫数越大,燃烧过程导致的损失越大;从燃烧室入口到尾喷管出口全过程总压损失越小,获得的比冲性能越大。推导和拟合了冲压发动机冲量差燃料比冲随燃烧室入口马赫数和总压恢复系数的灵敏度关系式,与被拟合数据的差异在3%以内,该关系式可用于双模态冲压发动机部件参数匹配与流道一体化设计工作。  相似文献   

10.
为了评估基于燃烧室壁面压力实时监控的双模态超燃冲压发动机闭环控制系统方案的可行性,在西北工业大学地面直连式实验台上开展了一系列双模态超燃冲压发动机燃烧室地面直连式实验。实验模拟了飞行马赫数4.0条件下两个不同燃烧室构型点火燃烧的实际工作过程,测量并分析了燃烧室壁面压力脉动、压力响应和激波串前沿位置等特征。燃烧室进口来流状态为马赫数2.0、总温约880K、总压0.8~1MPa。实验结果表明,燃烧室壁面压力存在明显脉动,且脉动幅度随着油气比的增加呈现增加趋势;壁面压力响应很快,响应时间在毫秒量级,说明在超燃冲压发动机闭环控制中,通过燃烧室实时壁面压力反馈来调节供油控制燃烧室工作状态是可能的;另外,通过改变燃油流量能够实时控制隔离段激波串前沿位置。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号