首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
We have examined the light and electron microscopic properties of hindlimb muscles of rats flown in space for 1-2 weeks on Cosmos biosatellite flights 1887 and 2044 and Space Shuttle missions Spacelab-3, Spacelab Life Sciences-1 and Spacelab Life Sciences-2. Tissues were obtained both inflight and postflight permitting definition of primary microgravity-induced changes and secondary reentry and gravity reloading-induced alterations. Spaceflight causes atrophy and expression of fast fiber characteristics in slow antigravity muscles. The stresses of reentry and reloading reveal that atrophic muscles show increased susceptibility to interstitial edema and ischemic-anoxic necrosis as well as muscle fiber tearing with disruption of contractile proteins. These results demonstrate that the effects of spaceflight on skeletal muscle are multifaceted, and major changes occur both inflight and following return to Earth's gravity.  相似文献   

2.
Changes in neuromuscular activation patterns associated with movements made in microgravity can contribute to muscular atrophy. Using EMG to monitor "postural" muscles, it was found that free floating arm flexions made in microgravity were not always preceded by neuromuscular activation patterns normally observed during movements made in unit gravity. Additionally, manipulation of foot sensory input during microgravity arm flexion impacted upon anticipatory postural muscle activation.  相似文献   

3.
Reduction of physical activity due to disease or environmental restraints, such as total bed rest or exposure to spaceflight, leads to atrophy of skeletal muscle and is frequently accompanied by alterations in food intake and the concentration of metabolic regulatory hormones such as insulin. Hindlimb suspension of laboratory rats, as a model for microgravity, also shows marked atrophy of gravity dependent muscles along with a reduced gain in body weight. Suspended rats exhibit enhanced sensitivity to insulin-induced glucose uptake when compared with normal control rats and resistance to insulin action when compared with control rats matched similarly for reduced body weight gain. These changes are accompanied by decreased insulin binding and tyrosine kinase activity in soleus but not plantaris muscle, unchanged glucose uptake by perfused hindlimb and decreased sensitivity but not responsiveness to insulin-induced suppression of net proteolysis in hindlimb skeletal muscle. These findings suggest that loss of insulin sensitivity during muscle atrophy is associated with decreased insulin binding and tyrosine kinase activity in atrophied soleus muscle along with decreased sensitivity to the effects of insulin on suppressing net protein breakdown but not on enhancing glucose uptake by perfused hindlimb.  相似文献   

4.
By the turn of this century, long-duration space missions, either in low Earth orbit or for got early planetary missions, will become commonplace. From the physiological standpoint, exposure to the weightless environment results in changes in body function, some of which are adaptive in nature and some of which can be life threatening. Important issues such as environmental health, radiation protection, physical deconditioning, and bone and muscle loss are of concern to life scientists and mission designers. Physical conditioning techniques such as exercise are not sufficient to protect future space travellers. A review of past experience with piloted missions has shown that gradual breakdown in bone and muscle tissue, together with fluid losses, despite a vigorous exercise regimen can ultimately lead to increased evidence of renal stones, musculoskeletal injuries, and bone fractures. Biological effects of radiation can, over long periods of time increase the risk of cancer development. Today, a vigorous program of study on the means to provide a complex exercise regimen to the antigravity muscles and skeleton is under study. Additional evaluation of artificial gravity as a mechanism to counteract bone and muscle deconditioning and cardiovascular asthenia is under study. New radiation methods are being developed. This paper will deal with the results of these studies.  相似文献   

5.
Atrophy of skeletal muscles is a serious problem in a microgravity environment. It is hypothesized that the unloading of postural muscles, which no longer must resist gravity force, causes an accelerated breakdown of contractile proteins, resulting in a reduction in muscle mass and strength. A crustacean model using the land crab, Gecarcinus lateralis, to assess the effects of spaceflight on protein metabolism is presented. The model is compared to a developmentally-regulated atrophy in which a premolt reduction in muscle mass allows the withdrawal of the large claws at molt. The biochemical mechanisms underlying protein breakdown involves both Ca(2+)-dependent and multicatalytic proteolytic enzymes. Crustacean claw muscle can be used to determine the interactions between shortening and unloading at the molecular level.  相似文献   

6.
The effects of gravitational unloading with or without intact neural activity and/or tension development on myosin heavy chain (MHC) composition, cross-sectional area (CSA), number of myonuclei, and myonuclear domain (cytoplasmic volume per myonucleus ratio) in single fibers of both slow and fast muscles of rat hindlimbs are reviewed briefly. The atrophic response to unloading is generally graded as follows: slow extensors > fast extensors > fast flexors. Reduction of CSA is usually greater in the most predominant fiber type of that muscle. The percentage of fibers expressing fast MHC isoforms increases in unloaded slow but not fast muscles. Myonuclear number per mm of fiber length and myonuclear domain is decreased in the fibers of the unloaded predominantly slow soleus muscle, but not in the predominantly fast plantaris. Decreases in myonuclear number and domain, however, are observed in plantaris fibers when tenotomy, denervation, or both are combined with hindlimb unloading. All of these results are consistent with the view that a major factor for fiber atrophy is an inhibition or reduction of loading of the hindlimbs. These data also indicate that predominantly slow muscles are more responsive to unloading than predominantly fast muscles.  相似文献   

7.
The "slow" antigravity muscle adductor longus was studied in rats after 14 days of spaceflight (SF). The techniques employed included standard methods for light microscopy, neural cell adhesion molecule (N-CAM) immunocytochemistry and electron microscopy. Light and electron microscopy revealed myofiber atrophy, segmental necrosis and regenerative myofibers. Regenerative myofibers were N-CAM immunoreactive (N-CAM-IR). The neuromuscular junctions showed axon terminals with a decrease or absence of synaptic vesicles, degenerative changes, vacant axonal spaces and changes suggestive of axonal sprouting. No alterations of muscle spindles was seen either by light or electron microscopy. These observations suggest that muscle regeneration and denervation and synaptic remodeling at the level of the neuromuscular junction may take place during spaceflight. In a separate study, GABA immunoreactivity (GABA-IR) was evaluated at the level of the hindlimb representation of the rat somatosensory cortex after 14 days of hindlimb unloading by tail suspension ("simulated" microgravity). A reduction in number of GABA-immunoreactive cells with respect to the control animals was observed in layer Va and Vb. GABA-IR terminals were also reduced in the same layers, particularly those terminals surrounding the soma and apical dendrites of pyramidal cells in layer Vb. On the basis of previous morphological and behavioral studies of the neuromuscular system after spaceflight and hindlimb suspension it is suggested that after limb unloading there are alterations of afferent signaling and feedback information from intramuscular receptors to the cerebral cortex due to modifications in the reflex organization of hindlimb muscle groups. We propose that the changes observed in GABA immunoreactivity of cells and terminals is an expression of changes in their modulatory activity to compensate for the alterations in the afferent information.  相似文献   

8.
It is well known that long-term exposure to microgravity causes a number of physiological and biochemical changes in humans; among the most significant are: 1) negative calcium balance resulting in the loss of bone; 2) atrophy of antigravity muscles; 3) fluid shifts and decreased plasma volume; and 4) cardiovascular deconditioning that leads to orthostatic intolerance. It is estimated that a mission to Mars may require up to 300 days in a microgravity environment; in the case of an aborted mission, the astronauts may have to remain in reduced gravity for up to three years. Although the Soviet Union has shown that exercise countermeasures appear to be adequate for exposures of up to one year in space, it is questionable whether astronauts could or should have to maintain such regimes for extremely prolonged missions. Therefore, the NASA Life Sciences Division has initiated a program designed to evaluate a number of methods for providing an artificial gravity environment.  相似文献   

9.
Hindlimb unloading can induce the cardiac atrophy and diminished cardiac function, however, the mechanisms responsible for which remain elusive. The chronic volume unloading of heart, which decreases the local mechanical stress, may lead to cardiac atrophy after hindlimb unloading. Many studies showed that integrin signaling, p38 MAPK, Heat shock protein 27 and cytoskeleton involved in the hypertrophic growth induced by mechanical stress. However, the mechanisms responsible for cardiac atrophy after hindlimb unloading are still unclear. In this study, we used the tail-suspended, hindlimb unloading rat model to simulate the effects of microgravity. Western blot analysis was used to detect the protein expression of Heat shock protein 27, focal adhesion kinase, p38 MAPK and their phosphorylation levels in rat cardiac muscle after 14d hindlimb unloading. The results showed that the phosphorylation levels of both Heat shock protein 27 and p38 MAPK were decreased significantly in rat cardiac muscle after hindlimb unloading. However, the phosphorylation level of focal adhesion kinase was not decreased significantly. The results suggested that Heat shock protein 27, the downstream of p38 MAPK, might play a critical role in the cardiac atrophy in response to simulated microgravity induced by hindlimb unloading.  相似文献   

10.
Maintenance of posture and production of functional, coordinated movement demand integration of sensory feedback with spinal and supra-spinal circuitry to produce adaptive motor control in altered gravity (G). To investigate neuroplastic processes leading to optimal performance in altered G we have studied motor control in adult rats using a battery of motor function tests following chronic exposure to various treatments (hyper-G, hindlimb suspension, chemical distruction of hair cells, space flight). These treatments differentially affect muscle fibers, vestibular receptors, and behavioral compensations and, in consequence, differentially disrupt air righting, swimming, posture and gait. The time-course of recovery from these disruptions varies depending on the function tested and the duration and type of treatment. These studies, with others (e.g., D'Amelio et al. in this volume), indicate that adaptation to altered gravity involves alterations in multiple sensory-motor systems that change at different rates. We propose that the use of parallel studies under different altered G conditions will most efficiently lead to an understanding of the modifications in central (neural) and peripheral (sensory and neuromuscular) systems that underlie sensory-motor adaptation in active, intact individuals.  相似文献   

11.
Egg rotation and centrifugation experiments strongly suggest a role for gravity in the determination of the spatial structure of amphibian embryos. Decisive experiments can only be made in Space. Eggs of Xenopus laevis, the South African clawed toad, were the first vertebrate eggs which were successfully fertilized on Sounding Rockets in Space. Unfixed, newly fertilized eggs survived reentry, and a reasonable number showed a seemingly normal gastrulation but died between gastrulation and neurulation. Only a few reached the larval stage, but these developed abnormally. In the future, we intend to test whether this abnormal morphogenesis is due to reentry perturbations, or due to a real microgravity effect, through perturbation of the reinitiation of meiosis and other processes, or started by later sperm penetration.  相似文献   

12.
研究了弹道一升力式载人航天器的再入制导规律和各种再入误差源对其落点的影响。主要包括以下内容:再入纵向制导和侧向制导规律的确定;分析各种单项误差对落点的影响;用MonteCarlo方法模拟各种再入误差源及其对落点偏差的综合影响。通过大量的模拟计算,掌据各种再入误差对落点偏差的影响,提出再入误差应具有的指标要求,并得到一些有益的结论。计算结果表明,确定的制导规律可以达到满意的落点控制效果。  相似文献   

13.
For the study of gravity's role in the processes of plant cell differentiation in-vitro, a model "seed-seedling-callus" has been used. Experiments were carried out on board the orbital stations Salyut-7 and Mir as well as on clinostat. They lasted from 18 to 72 days. It was determined that the exclusion of a one-sided action of gravity vector by means of clinostat and spaceflight conditions does not impede the formation and growth of callus tissue; however, at cell and subcellular levels structural and functional changes do take place. No significant changes were observed either on clinostat or in space concerning the accumulation of fresh biomass, while the percentage of dry material in space is lower than in control. Both in microgravity (MG) and in control, even after 72 days of growth, cells with a normally developed ultrastructure are present. In space, however, callus tissue more often contains cells in which the cross-section area of a cell, a nuclei and of mitochondria are smaller and the vacuole area--bigger than in controls. In microgravity a considerable decrease in the number of starch-containing cells and a reduction in the mean area of starch grains in amyloplasts is observed. In space the amount of soluble proteins in callus tissue is 1.5 times greater than in control. However, no differences were observed in fractions when separated by the SDS-PAGE method. In microgravity the changes in cell wall material components was noted. In the space-formed callus changes in the concentration of ions K, Na, Mg, Ca and P were observed. However, the direction of these changes depends on the age of callus. Discussed are the possible reasons for modification of morphological and metabolic parameters of callus cells when grown under changed gravity conditions.  相似文献   

14.
In Zea mays L., changes in orientation of stems are perceived by the pulvinal tissue, which responds to the stimulus by differential growth resulting in upward bending of the stem. Gravity is perceived in the bundle sheath cells, which contain amyloplasts that sediment to the new cell base when a change in the gravity vector occurs. The mechanism by which the mechanical signal is transduced into a physiological response is so far unknown for any gravity perceiving tissue. It is hypothesized that this involves interactions of amyloplasts with the plasma membrane and/or ER via cytoskeletal elements. To gain further insights into this process we monitored amyloplast movements in response to gravistimulation. In a pharmacological approach we investigated how the dynamics of plastid sedimentation are affected by actin and microtubule (MT) disrupting drugs. Dark grown caulonemal filaments of the moss Physcomitrella patens respond to gravity vector changes with a reorientation of tip growth away from the gravity vector. MT distributions in tip cells were monitored over time and MTs were seen to accumulate preferentially on the lower flank of the tip 30 min after a 90 degree turn. Using a self-referencing Ca2+ selective ion probe, we found that growing caulonemal filaments exhibit a Ca2+ influx at the apical dome, similar to that reported previously for other tip growing cells. However, in gravistimulated Physcomitrella filaments the region of Ca2+ influx is not confined to the apex, but extends about 60 micrometers along the upper side of the filament. Our results indicate an asymmetry in the Ca2+ flux pattern between the upper and side of the filament suggesting differential activation of Ca2+ permeable channels at the plasma membrane.  相似文献   

15.
This review surveys data in the literature and our own findings concerning the effects of weightlessness on bones and muscles of white rats flown on Cosmos biosatellites and Spacelab-3. It has been shown that the magnitude and sign of functional changes in muscles depend on their biomechanical profile. Structural and metabolic foundations of functional adaptation and its dynamics have been identified: in 5-7 day flights muscle contractility changes are mainly associated with a diminished activity of excitation-contraction coupling, in longer-term flights they are produced by changes in myosin populations specific for myofibers of different functional profile. At early flight stages (up to 1 week) osteoporosis and bone demineralization are very mild; therefore decrease in bone mechanical strength may be caused by changes in physico-chemical parameters of the collagen-crystal system. In flights of up to 3 weeks noticeable osteoporosis develops which is primarily produced by osteogenesis inhibition and which is responsible for a marked decrease of bone strength. These changes may result from uncoupling of bone resorption and remodelling processes. This uncoupling is characterized as incomplete osteogenesis and may be caused by changes in the collagen composition of the organic bone matrix. The above-mentioned adaptive changes in muscle functions of specific skeletal compartments may play a role in different responses of various bones to weightlessness.  相似文献   

16.
Neuroplasticity changes during space flight.   总被引:1,自引:0,他引:1  
Neuroplasticity refers to the ability of neurons to alter some functional property in response to alterations in input. Most of the inputs received by the brain and thus the neurons are coming from the overall sensory system. The lack of gravity during space flight or even the reduction of gravity during the planned Mars missions are and will change these inputs. The often observed "loop swimming" of some aquatic species is under discussion to be based on sensory input changes as well as the observed motion sickness of astronauts and cosmonauts. Several reports are published regarding these changes being based on alterations of general neurophysiological parameters. In this paper a summing-up of recent results obtained in the last years during space flight missions will be presented. Beside data obtained from astronauts and cosmonauts, main focus of this paper will be on animal model system data.  相似文献   

17.
The manifestation of gravitropic reaction in plants has been considered from the phylogenetic point of view. A chart has been suggested according to which it is supposed that the first indications of the ability to identify the direction of the gravitational vector were inherent in the most ancient eukaryotes, which gave rise to green, brown, yellow-green, golden and diatomaceous algae as well as fungi. The experiments on the role of gravity in plant ontogenesis are being continued. The sum total of the data obtained in a number of experiments in space shows that under these conditions a structurally modified but normally functioning gravireceptive apparatus is formed. The data confirming the modification, under changed gravity, of the processes of integral and cellullar growth of the axial organs of seedlings as well as of the anatomo-morphological structure and developmental rates of plants during their prolonged growth in space are presented. It is assumed that this fact testifies to the presence of systems interacting with gravity during plant ontogenesis. At the same time the necessity for further experiments in order to differentiate an immediate biological effect of gravity from the ones conditioned by it indirectly due to the changes in the behavior of liquids and gases is pointed out. The methodological aspects of biological experiments in space as the main source of reliable information on the biological role of gravity are discussed.  相似文献   

18.
Although the orientation of mycelial hyphal growth is usually independent of the gravity vector, individual specialised hyphae can show response to gravity. This is exemplified by the sporangiophore of Phycomyces, but the most striking gravitropic reactions occur in mushroom fruit bodies. During the course of development of a mushroom different tropisms predominate at different times; the young fruit body primordium is positively phototropic, but negative gravitropism later predominates. The switch between tropisms has been associated with meiosis. The spore-bearing tissue is positively gravitropic and responds independently of the stem. Bracket polypores do not show tropisms but exhibit gravimorphogenetic responses: disturbance leads to renewal of growth producing an entirely new fruiting structure. Indications from both clinostat and space flown experiments are that the basic form of the mushroom (overall tissue arrangement of stem, cap, gills, hymenium, veil) is established independently of the gravity vector although maturation, and especially commitment to the meiosis-sporulation pathway, requires the normal gravity vector. The gravity perception mechanism is difficult to identify. The latest results suggest that disturbance of cytoskeletal microfilaments is involved in perception (with nuclei possibly being used as statoliths), and Ca2(+)-mediated signal transduction may be involved in directing growth differentials.  相似文献   

19.
Drawing on experience from Gravity Recovery and Climate Experiment (GRACE) data analysis, the scientific challenges were already identified in several studies. Any future mission should focus on improvement in both precision and resolution in space and time. For future gravity missions which use high quality sensors, aliasing of high frequency time-variable geophysical signals to the lower frequency signals is one of the most serious problems. The aliasing problem and the spatio-temporal resolution are mainly restricted by two sampling theorems describing the space-time sampling of satellite missions: (i) a Heisenberg-like uncertainty theorem which states that the product of spatial resolution and time resolution is constant, and (ii) the Colombo–Nyquist rule (CNR), which requires the number of satellite revolutions in a repeat period to be at least twice a given maximum spherical harmonic degree. The CNR holds under the assumption of equal ground-track spacing, and limits the spatial resolution of the gravity solution.  相似文献   

20.
Calcium signaling in plant cells in altered gravity.   总被引:5,自引:0,他引:5  
Changes in the intracellular Ca2+ concentration in altered gravity (microgravity and clinostating) evidence that Ca2+ signaling can play a fundamental role in biological effects of microgravity. Calcium as a second messenger is known to play a crucial role in stimulus-response coupling for many plant cellular signaling pathways. Its messenger functions are realized by transient changes in the cytosolic ion concentration induced by a variety of internal and external stimuli such as light, hormones, temperature, anoxia, salinity, and gravity. Although the first data on the changes in the calcium balance in plant cells under the influence of altered gravity have appeared in 80th, a review highlighting the performed research and the possible significance of such Ca2+ changes in the structural and metabolic rearrangements of plant cells in altered gravity is still lacking. In this paper, an attempt was made to summarize the available experimental results and to consider some hypotheses in this field of research. It is proposed to distinguish between cell gravisensing and cell graviperception; the former is related to cell structure and metabolism stability in the gravitational field and their changes in microgravity (cells not specialized to gravity perception), the latter is related to active use of a gravitational stimulus by cells presumebly specialized to gravity perception for realization of normal space orientation, growth, and vital activity (gravitropism, gravitaxis) in plants. The main experimental data concerning both redistribution of free Ca2+ ions in plant cell organelles and the cell wall, and an increase in the intracellular Ca2+ concentration under the influence of altered gravity are presented. Based on the gravitational decompensation hypothesis, the consequence of events occurring in gravisensing cells not specialized to gravity perception under altered gravity are considered in the following order: changes in the cytoplasmic membrane surface tension --> alterations in the physicochemical properties of the membrane --> changes in membrane permeability, --> ion transport, membrane-bound enzyme activity, etc. --> metabolism rearrangements --> physiological responses. An analysis of data available on biological effects of altered gravity at the cellular level allows one to conclude that microgravity environment appears to affect cytoskeleton, carbohydrate and lipid metabolism, cell wall biogenesis via changes in enzyme activity and protein expression, with involvement of regulatory Ca2+ messenger system. Changes in Ca2+ influx/efflux and possible pathways of Ca2+ signaling in plant cell biochemical regulation in altered gravity are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号