首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A comet nucleus considered as an aggregate of interstellar dust would produce a mist of very finely divided (radius ~ 0.01 μm) particles of carbon and metal oxides accompanying the larger dust grains. These small particles which are very abundant in the interstellar dust size spectrum would provide substantial physical effects because of their large surface area. They may show up strongly in particle detectors on the Halley probes. A strong basis for serious consideration of these particles comes from the other evidence that interstellar dust grains are the building blocks of comets; e.g. (1) the explanation of the “missing” carbon in comets; (2) The S2 molecule detection which suggests that the comet solid ice materials have been previously subjected to ultraviolet radiation (as are interstellar grains) before aggregation into the comet; (3) the predicted dust to gas ratio.  相似文献   

2.
Images obtained by the Miniature Integrated Camera and Imaging Spectrometer (MICAS) experiment onboard the Deep Space 1 spacecraft which encountered comet 19P/Borrelly on September 22nd 2001 show a dust coma dominated by jets. In particular a major collimated dust jet on the sunward side of the nucleus was observed. Our approach to analyse these features is to integrate the observed intensity in concentric envelopes around the nucleus. The same procedures has been used on the Halley Multicolour Camera images of comet 1P/Halley acquired on March 14th 1986. We are able to show that at Borrelly the dust brightness dependence as a function of radial distance is different to that of Halley. At large distances both comets show constant values as the size of the concentric envelopes increases (as one would expect for force free radial outflow). For Halley the integral decreases as one gets closer to the nucleus. Borrelly shows opposite behaviour. The main cause for Halley's intensity distribution is either high optical thickness or particle fragmentation. For Borrelly, we have constructed a simple model of the brightness distribution near the nucleus. This indicates that the influence of deviations from point source geometry is insufficient to explain the observed steepening of the intensity profile close to the nucleus. Dust acceleration or fragmentation into submicron particles appear to be required. We also estimate the dust production rate of Borrelly with respect to Halley and compare their dust to gas ratios.  相似文献   

3.
Comet 19P/Borrelly was observed by Deep Space One spacecraft on September 22, 2001 (Soderblom et al., 2002).The DS1 images show a very dark and elongate nucleus with a complex topography; the IR spectra show a strong red-ward slope consistent with a very hot and dry surface (345K to 300K). During DS1 encounter the comet coma was dominated by a prominent jet but most of the comet was inactive, confirming the Earth-based observations that <10% of the surface is actively sublimating. We have developed a thermal evolution model of comet PBorrelly, using a numerical code that is able to solve the heat conduction and gas diffusion equations at the same time across an idealized spherical nucleus ( De Sanctis et al., 1999, 2000; Capria et al., 2000; Coradini et al., 1997a,b). The comet nucleus is composed by water, volatiles ices and dust in different proportions. The refractory component is made by grains that are embedded in the icy matrix. The code is able to account for the dust release, contributing to the dust flux, and the formation of dust mantles on the comet surface. The model was applied to a cometary nucleus with the estimated physical and dynamical characteristics of P/Borrelly in order to infer the status and activity level of a body on such an orbit during the DS1 observation. The comet gas flux, differentiation and thermal behavior were simulated and reproduced. The model results are in good agreement with the DS1 flyby results and the ground based observations, in terms of activity, dust coverage and temperatures of the surface.  相似文献   

4.
The work we present deals with the spectrometric measurements of VIRTIS instrument of the Comet P/Wirtanen planned for the Rosetta mission. This spectrometer can monitor (VIRTIS M channel: 0.250μm – 0.980μm; Δκ=20cm−1; 0.980 – 5.0 μm; Δκ = 5cm−1; VIRTIS H channel: 2.0 μm – 5.0 μm; Δκ=2cm−1) the nucleus and the coma in order to provide a general picture of coma's composition, the production of gas and dust, the relationship of coma production to surface composition and the structure and variation of mineralogy of the nucleus surface. During the mission the observation conditions of the spectroscopic investigation change due to different relative positions spacecraft/comet, and to the different illumination conditions of the surface at various distances of the comet to the Sun. The nucleus surface is continuously modified by the ice sublimation accompanied by gas and dust emission. Consequently the surface also its spectrophotometric properties changes and their monitoring can give a new insight. The important role of simulations is to predict the results of measurements in various experimental condition what, in the future, can help in interpretation of the measured data.

In this paper the first results of our simulation the radiance from the comet in the 0.25–5.0μm spectral range at two distances from the Sun (1AU and 3AU) are shown. The distance between the Rosetta orbiter and the nucleus surface as well as the sun zenith angles are taken into account according to the Rosetta mission phases. In fact the surface and coma properties vary along the comet orbit, and should be taken into account in our calculations. The optical parameters of the dust on the surface (e.g. reflectance) and in the coma (e.g. Qext) were calculated from optical constants of possible comet analogues. The thermodynamic parameters of the comet are taken from the models of comet evolution. Through this kind of modelling it is possible to identify the surface characteristics in spectra of the radiation from the surface of nucleus transmitted through the coma loaded with dust and gases.

Even if the “Rosetta mission” is postponed, with the consequence of a target change, we think that our idea and the method used for the simulations can be useful also for the new Rosetta target - the comet 67P/Churyumov Gerasimenko.  相似文献   


5.
The nucleus of an active comet, such as comet Halley near its perihelion, produces large quantities of gas and dust. The resulting cometary atmosphere, or coma, extends more than a million kilometers into space, where it interacts with the solar wind. An “induced” cometary magnetosphere is a consequence of this interaction. Cometary ion pick-up and mass loading of the solar wind starts to take place at very large cometocentric distances. Eventually this mass loading leads to the formation of a weak cometary bow shock. Even closer to the nucleus, collisional processes, such as ion-neutral chemistry, become important. Other features of the magnetosphere of an active comet include a magnetic barrier, a magnetotail, and a diamagnetic cavity near the nucleus. X-ray emission from comets is produced by the interaction of the solar wind with cometary neutrals and this topic is also discussed. A broad review of the cometary magnetosphere will be given in this paper.  相似文献   

6.
Molecular elemental and isotopic abundances of comets provide sensitive diagnostics for models of the primitive solar nebula. New measurements of the N2, NH and NH2 abundances in comets together with the in situ Giotto mass spectrometer and dust analyzer data provide new constraints for models of the comet forming environment in the solar nebula. An inventory of nitrogen-containing species in comet Halley indicates that NH3 and CN are the dominant N carriers observed in the coma gas. The elemental nitrogen abundance in the gas component of the coma is found to be depleted by a factor approximately 75 relative to the solar photosphere. Combined with the Giotto dust analyzer results for the coma dust component, we find for comet Halley Ngas + dust approximately 1/6 the solar value. The measurement of the CN carbon isotope ratio from the bulk coma gas and dust in comet Halley indicates a significantly lower value, 12C/13C = 65 +/- 9 than the solar system value of 89 +/- 2. Because the dominant CN carrier species in comets remains unidentified, it is not yet possible to attribute the low isotope ratio predominantly to the bulk gas or dust components. The large chemical and isotopic inhomogeneities discovered in the Halley dust particles on 1 mu scales are indicative of preserved circumstellar grains which survived processing in the interstellar clouds, and may be related to the presolar silicon carbide, diamond and graphite grains recently discovered in carbonaceous chondrites. Less than 0.1% of the bulk mass in the primitive meteorites studied consists of these cosmically important grains. A larger mass fraction (approximately 5%) of chemically heterogeneous organic grains is found in the nucleus of comet Halley. The isotopic anomalies discovered in the PUMA 1 Giotto data in comet Halley are probably also attributable to preserved circumstellar grains. Thus the extent of grain processing in the interstellar environment is much less than predicted by interstellar grain models, and a significant fraction of comet nuclei (approximately 5%) may be in the form of preserved circumstellar matter. Comet nuclei probably formed in much more benign environments than primitive meteorites.  相似文献   

7.
ESA's Giotto mission to Halley's comet is a fast flyby in March 1986, about four weeks after the comet's perihelion passage when it is most active. The scientific payload comprises 10 experiments with a total mass of about 60 kg: a camera for imaging the comet nucleus, three mass spectrometers for analysis of the elemental and isotopic composition of the cometary gas and dust environment, various dust impact detectors, a photopolarimeter for measurements of the coma brightness, and a set of plasma instruments for studies of the solar wind/comet interaction. In view of the high flyby velocity of 68 km/s the experiment active time is very short (only 4 hours) and all data are transmitted back to Earth in real time at a rate of 40 kbps. The Giotto spacecraft is spin-stabilised with a despun high gain parabolic dish antenna inclined at 44.3° to point at the Earth during the encounter while a specially designed dual-sheet bumper shield at the other end protects the spacecraft from being destroyed by hypervelocity dust impacts. The mission will probably end near the point of closest approach to the nucleus when the spacecraft attitude will be severely perturbed by impacting dust particles leading to a loss of the telecommunications link.  相似文献   

8.
The comet thermal model of Weissman and Kieffer is used to calculate gas production rates and other parameters for the 1986 perihelion passage of Halley's Comet. Gas production estimates are very close to revised pre-perihelion estimates by Newburn based on 1910 observations of Halley; the increase in observed gas production post-perihelion may be explained by a variety of factors. The energy contribution from multiply scattered sunlight and thermal emission by coma dust increases the total energy reaching the Halley nucleus at perihelion by a factor of 2.4. The high obliquity of the Halley nucleus found by Sekanina and Larson may help to explain the asymmetry in Halley's gas production rates around perihelion.  相似文献   

9.
A set of nominal model parameters for P/Halley is derived from its light curve and spectra. In those cases where Halley observations are not sufficient, the average value derived from a large set of other comets has been used, or data from comet Bennett, Halley's best analogue has been taken. The derived parameters include nucleus mass, size, density, albedo, rotation period, axial inclination, and surface temperature, the composition of the parent molecules, the total gas and dust production rates, distributions for the dust size and bulk density as well as various other parameters.  相似文献   

10.
The “Vega” Soviet flyby probes to comet Halley will carry a French infrared sounder, called “I.K.S.”. In order to assess its observing capabilities, a theoretical model of the comet infrared emission was constructed. We show how the experiment results will be used to derive the nucleus size and radiative properties, and to study the distribution of gas and dust in the inner coma and circumnuclear area. A preliminary discussion is made of the relevance of the data in instances where the cometary phenomena would be more complex than assumed in the model.  相似文献   

11.
The properties of dust ejecta from Comet Halley are studied on the basis of (a) evidence from the comet's past apparitions and (b) analogy with recent, physically similar comets. Specifically discussed are the light curve and spectrum, discrete phenomena in the head, the physical properties of the nucleus (size, albedo, rotation, surface temperature, and morphology), and an interaction between the nucleus and dust atmosphere. Also reviewed are constraints on the size and mass distributions of dust particles, information on submicron-size and submillimeter-size grains from the comet's dust tail and antitail, and the apparent existence of more than one particle type. Similarities between the jet patterns of Halley and the parent comet of the Perseid meteor stream are depicted, and effects of the surface heterogeneity (discrete active regions) on the dust flow are assessed. Current dust models for Halley are summarized and the existence of short-term variations in the dust content in the comet's atmosphere is suggested.  相似文献   

12.
The principal observational properties of silicate core-organic refractory mantle interstellar dust grains in the infrared at 3.4 microns and at 10 microns and 20 microns are discussed in terms of the cyclic evolution of particles forming in stellar atmospheres and undergoing subsequent accretion, photoprocessing and destruction (erosion). Laboratory plus space emulation of the photoprocessing of laboratory analog ices and refractories are discussed. The aggregated interstellar dust model of comets is summarized. The same properties required to explain the temperature and infrared properties of comet coma dust are shown to be needed to account for the infrared silicate and continuum emission of the beta Pictoris disk as produced by a cloud of comets orbiting the star.  相似文献   

13.
No cometary nucleus has ever been observed directly. A model is deduced from ground-based and space data on cometary atmospheres. The main features of the chemical composition of cometary nuclei and the estimation of their sizes are described. The treatment of the process of vaporization of dusty ice shows, contrary to widespread opinion, that the islands on the non-volatile porous mantle are formed, not in perihelion but at large heliocentric distances and on the coldest parts of a nucleus. It is shown that the mantle does not disappear when the comet approaches the Sun, as it is often supposed, but is fluidized. The proposed model can give a number of properties of cometary nuclei but some of them can be established by direct space methods only. Such properties are the masses, the rotational velocities, the homogeneity of the dust-ice mixture, the internal structure, the power of the internal sources of energy.  相似文献   

14.
The VEGA-1 and VEGA-2 spacecraft made their closest approach to Comet Halley on 6 and 9 March, respectively. In this paper those results of the onboard imaging experiment which were obtained around closest approach are discussed. The nucleus of the comet was clearly identifiable as an irregularly shaped object, with overall dimensions of (16±1)×(8±1)×(8±1) km. The nucleus rotates in the prograde sense about an axis nearly perpendicular to the orbital plane with a period of 53±2 hours. Its albedo is only 0.04±0.020.01 Many of the jet features observed during the second fly-by have been spatially reconstructed. Their sources form a quasi-linear structure on the surface. The dust above the surface is shown to be generally optically thin with the exception of certain specific dust jets. Brightness features on the surface are clearly seen. Correlating our data with other measurements, we conclude that the dirty snow-ball model will probably need to be revised.  相似文献   

15.
A European probe to comet Halley is proposed. The probe's model payload consists of 8 scientific instruments, viz. neutral, ion and dust impact mass spectrometers, magnetometer, medium energy ion and electron analyzer, camera, dust impact detectors and plasma wave experiment. Fly-by of the comet Halley nucleus will take place on November 28th, 1985, at about 500 km miss distance. The main spacecraft serves as relay link to transmit the observed data to Earth. As probe, a modified ISEE 2 design is proposed. Because of the cometary dust hazard expected in the coma a heavy dust shield (27 kg) is required, consisting of a thin front sheet and a 3 layer rear sheet. The probe is spin-stabilized (12 rpm), has no active attitude and orbit control capability and uses battery power only to provide about 1000 Wh for a measuring phase. A despun antenna transmits up to 20 kbit/s, in X-band. The total probe mass is estimated at 250 kg. The 3 model development programme should start in mid 1981 with Phase B.  相似文献   

16.
An infrared sounder is being developed in France to observe in 1986 Comet Halley from the Soviet “VEGA” flyby probes. The instrument, called “I.K.S.”, has three measuring channels. Two of these channels will provide the spectrum of the comet emission in the spectral intervals 2.5–5.0 μ and 6–12 μ, at a constant resolution λ/Δλ = 50.The third channel analyzes the comet I.R. image at a spatial frequency of about 1 arc minute?1; two I.R. colours are used in this channel: 7–10 μ and 10–14 μ. From the results expected, it is hoped that (1) most primary simple molecules emitted by the nucleus will be identified; (2) the chemical composition and perhaps crystalline structure of the dust grains and ices released by the comet will be derived; and (3) the diameter of the nucleus and its brightness temperatures will be measured.  相似文献   

17.
The Giotto, Vega-1 and Vega-2 spacecraft flew through the environment of comet Halley at a relatively close range with velocities of the order of 70–80 km/s. The fore sections of their surface were bombarded by neutral molecules and dust grains which caused the emission of secondary electrons and sputtered ions. This paper makes use of the secondary electron current measurements performed on Vega-1 to infer some characteristic features of the cometary atmosphere. The total gas production rate is estimated to be of the order of 1030 molecules/s and is found to vary with time; the presence of a major jet is also detected at closest approach.  相似文献   

18.
Early results from, and research initiatives warranted by, the Earth-based observations of Halley's near-nucleus and related phenomena are reviewed. Where appropriate, this information is combined with spacecraft data obtained by the various flight projects. The basic objective is to gain a greater insight into the nature of the comet's nucleus and its environment. Among topics are the brightness variations at large heliocentric distances along the inbound leg of the orbit; the bulk and rotational properties of the nucleus, including possible precession; the surface morphology and the formation of dust jets; subfemtogram dust particles and their presence in a sunward spike and relation to CN jets; comparison of the hydrogen coma's “pulsation” pattern with the surface distribution of major dust vents; the events causing Giotto's wobbling near its closest approach to the comet; and the recent developments in theoretical modeling of the icy-conglomerate nucleus.  相似文献   

19.
Ground-based observations and in-situ measurements of the gas activities and coma structures of comet Halley have yielded many new insights to the expansion of atmospheric gas from the central nucleus. The first impression from these results is discussed in terms of present theoretical understanding of the different gas phenomena in the inner coma (r 104 km). The need for developing a new generation of theoretical models capable of describing the observed highly anisotropic coma activities with spin-modulation in the outgassing rate as well as short-term outbursts is stressed.  相似文献   

20.
Venera-Halley mission is to be launched to Venus in Dec. 1984. It will fly by Venus in June 1985. Separation of the cometary probe and Venera descend module will take place at that time. The gravitational swing-by at Venus will provide the encounter with the Halley comet in March 1986. The remote sensing of the inner coma (TV-imagery, spectrometry in the region from 1200 A to 12 μm, polarimetry) and of the nucleus, direct measurements of dust fluxes, dust composition, plasma and magnetic field are planned in the framework of multinational cooperation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号