首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
THE CLUSTER ION SPECTROMETRY (CIS) EXPERIMENT   总被引:5,自引:0,他引:5  
The Cluster Ion Spectrometry (CIS) experiment is a comprehensive ionic plasma spectrometry package on-board the four Cluster spacecraft capable of obtaining full three-dimensional ion distributions with good time resolution (one spacecraft spin) with mass per charge composition determination. The requirements to cover the scientific objectives cannot be met with a single instrument. The CIS package therefore consists of two different instruments, a Hot Ion Analyser (HIA) and a time-of-flight ion COmposition and DIstribution Function analyser (CODIF), plus a sophisticated dual-processor-based instrument-control and Data-Processing System (DPS), which permits extensive on-board data-processing. Both analysers use symmetric optics resulting in continuous, uniform, and well-characterised phase space coverage. CODIF measures the distributions of the major ions (H+, He+, He++, and O+) with energies from ~0 to 40 keV/e with medium (22.5°) angular resolution and two different sensitivities. HIA does not offer mass resolution but, also having two different sensitivities, increases the dynamic range, and has an angular resolution capability (5.6° × 5.6°) adequate for ion-beam and solar-wind measurements.  相似文献   

2.
After one year of operation the GEOS-1 Ion Composition Experiment has surveyed plasma composition at all local times in the L range 3 8 and the energy per charge range from thermal to 16 keV/e. From measurements made in the keV range during eleven magnetic storms we find that the percentage of heavy (M/Q > 1) ions present in the outer magnetosphere increases by a factor of 3 to 10 during disturbances. We conclude that two independent sources (solar wind, characterized by 4He2+, and ionosphere, characterized by O+) give on the average comparable contributions to injected populations, although in a single event one or the other source may dominate. However, in magnetically quiet periods protons are the dominant species with a few percent of heavy ions. With the help of special satellite manoeuvres magnetic field aligned fluxes of 0.05-3 keV/e H+, He+, O+ with traces of O2+ have been observed which may be related to ion beams found previously at lower altitudes in the auroral zone. At still lower energies ( 1 eV/e) the thermal plasma population is found to be made up of six ion species, three of which, D+, He2+ and O2+, were unknown in the magnetosphere prior to the GEOS-1 measurements. We present here a study of the evolution of doubly charged ions and their parent populations over four consecutive days. Various production mechanisms for doubly charged ions are discussed. We argue that ionization of singly charged ions by UV and energetic electrons and protons is the dominant process for plasmasphere production. Furthermore, the observed high concentrations of O2+ at high altitudes are a result of production in the upper ionosphere and plasmasphere combined with upward transport by thermal diffusion. Throughout the 1 year lifetime of GEOS-1 the ICE functioned perfectly and, because of its novel design, a short review of technical performance is included here.  相似文献   

3.
The HOPE mass spectrometer of the Radiation Belt Storm Probes (RBSP) mission (renamed the Van Allen Probes) is designed to measure the in situ plasma ion and electron fluxes over 4π sr at each RBSP spacecraft within the terrestrial radiation belts. The scientific goal is to understand the underlying physical processes that govern the radiation belt structure and dynamics. Spectral measurements for both ions and electrons are acquired over 1 eV to 50 keV in 36 log-spaced steps at an energy resolution ΔE FWHM/E≈15 %. The dominant ion species (H+, He+, and O+) of the magnetosphere are identified using foil-based time-of-flight (TOF) mass spectrometry with channel electron multiplier (CEM) detectors. Angular measurements are derived using five polar pixels coplanar with the spacecraft spin axis, and up to 16 azimuthal bins are acquired for each polar pixel over time as the spacecraft spins. Ion and electron measurements are acquired on alternate spacecraft spins. HOPE incorporates several new methods to minimize and monitor the background induced by penetrating particles in the harsh environment of the radiation belts. The absolute efficiencies of detection are continuously monitored, enabling precise, quantitative measurements of electron and ion fluxes and ion species abundances throughout the mission. We describe the engineering approaches for plasma measurements in the radiation belts and present summaries of HOPE measurement strategy and performance.  相似文献   

4.
The general scientific objective of the ASPERA-3 experiment is to study the solar wind – atmosphere interaction and to characterize the plasma and neutral gas environment with within the space near Mars through the use of energetic neutral atom (ENA) imaging and measuring local ion and electron plasma. The ASPERA-3 instrument comprises four sensors: two ENA sensors, one electron spectrometer, and one ion spectrometer. The Neutral Particle Imager (NPI) provides measurements of the integral ENA flux (0.1–60 keV) with no mass and energy resolution, but high angular resolution. The measurement principle is based on registering products (secondary ions, sputtered neutrals, reflected neutrals) of the ENA interaction with a graphite-coated surface. The Neutral Particle Detector (NPD) provides measurements of the ENA flux, resolving velocity (the hydrogen energy range is 0.1–10 keV) and mass (H and O) with a coarse angular resolution. The measurement principle is based on the surface reflection technique. The Electron Spectrometer (ELS) is a standard top-hat electrostatic analyzer in a very compact design which covers the energy range 0.01–20 keV. These three sensors are located on a scanning platform which provides scanning through 180 of rotation. The instrument also contains an ion mass analyzer (IMA). Mechanically IMA is a separate unit connected by a cable to the ASPERA-3 main unit. IMA provides ion measurements in the energy range 0.01–36 keV/charge for the main ion components H+, He++, He+, O+, and the group of molecular ions 20–80 amu/q. ASPERA-3 also includes its own DC/DC converters and digital processing unit (DPU).  相似文献   

5.
The plasma instrumentation (PLS) for the Galileo Mission comprises a nested set of four spherical-plate electrostatic analyzers and three miniature, magnetic mass spectrometers. The three-dimensional velocity distributions of positive ions and electrons, separately, are determined for the energy-per-unit charge (E/Q) range of 0.9 V to 52 kV. A large fraction of the 4-steradian solid angle for charged particle velocity vectors is sampled by means of the fan-shaped field-of-view of 160°, multiple sensors, and the rotation of the spacecraft spinning section. The fields-of-view of the three mass spectrometers are respectively directed perpendicular and nearly parallel and anti-parallel to the spin axis of the spacecraft. These mass spectrometers are used to identify the composition of the positive ion plasmas, e.g., H+, O+, Na+, and S+, in the Jovian magnetosphere. The energy range of these three mass spectrometers is dependent upon the species. The maximum temporal resolutions of the instrument for determining the energy (E/Q) spectra of charged particles and mass (M/Q) composition of positive ion plasmas are 0.5 s. Three-dimensional velocity distributions of electrons and positive ions require a minimum sampling time of 20 s, which is slightly longer than the spacecraft rotation period. The two instrument microprocessors provide the capability of inflight implementation of operational modes by ground-command that are tailored for specific plasma regimes, e.g., magnetosheath, plasma sheet, cold and hot tori, and satellite wakes, and that can be improved upon as acquired knowledge increases during the tour of the Jovian magnetosphere. Because the instrument is specifically designed for measurements in the environs of Jupiter with the advantages of previous surveys with the Voyager spacecraft, first determinations of many plasma phenomena can be expected. These observational objectives include field-aligned currents, three-dimensional ion bulk flows, pickup ions from the Galilean satellites, the spatial distribution of plasmas throughout most of the magnetosphere and including the magnetotail, and ion and electron flows to and from the Jovian ionosphere.  相似文献   

6.
The Extreme Ultraviolet Imager Investigation for the IMAGE Mission   总被引:13,自引:0,他引:13  
Sandel  B.R.  Broadfoot  A.L.  Curtis  C.C.  King  R.A.  Stone  T.C.  Hill  R.H.  Chen  J.  Siegmund  O.H.W.  Raffanti  R.  Allred  DAVID D.  Turley  R. STEVEN  Gallagher  D.L. 《Space Science Reviews》2000,91(1-2):197-242
The Extreme Ultraviolet Imager (EUV) of the IMAGE Mission will study the distribution of He+ in Earth's plasmasphere by detecting its resonantly-scattered emission at 30.4 nm. It will record the structure and dynamics of the cold plasma in Earth's plasmasphere on a global scale. The 30.4-nm feature is relatively easy to measure because it is the brightest ion emission from the plasmasphere, it is spectrally isolated, and the background at that wavelength is negligible. Measurements are easy to interpret because the plasmaspheric He+ emission is optically thin, so its brightness is directly proportional to the He+ column abundance. Effective imaging of the plasmaspheric He+ requires global `snapshots in which the high apogee and the wide field of view of EUV provide in a single exposure a map of the entire plasmasphere. EUV consists of three identical sensor heads, each having a field of view 30° in diameter. These sensors are tilted relative to one another to cover a fan-shaped field of 84°×30°, which is swept across the plasmasphere by the spin of the satellite. EUVs spatial resolution is 0.6° or 0.1 R E in the equatorial plane seen from apogee. The sensitivity is 1.9 count s–1 Rayleigh–1, sufficient to map the position of the plasmapause with a time resolution of 10 min.  相似文献   

7.
After a brief historical review of the discovery of helium in the terrestrial atmosphere, the production mechanisms of the isotopes He4 and He3 are discussed. Although the radioactive production of He4 in the Earth is well understood, some uncertainty still exists for the degassing process leading to an atmospheric influx of (2.5 ±1.5) × 106 atoms cm–2 s–1. Different production mechanisms are possible for He3 leading to an influx of (7.5±2.5) atoms cm–2 s–1. Observations of helium in the thermosphere show a great variability of this constituent. The different mechanisms proposed to explain the presence of the winter helium bulge are discussed. Since helium ions are present in the topside ionosphere and in the magnetosphere, ionization mechanisms are analyzed. Owing to possible variations and uncertainties in the solar UV flux, the photoionization coefficient is (8±4) × 10–8 s–1. Finally, the helium balance between production in the earth and loss into the interplanetary space is discussed with respect to the different processes which can play an effective role.  相似文献   

8.
The Solar Wind and Suprathermal Ion Composition Experiment (SMS) on WIND is designed to determine uniquely the elemental, isotopic, and ionic-charge composition of the solar wind, the temperatures and mean speeds of all major solar-wind ions, from H through Fe, at solar wind speeds ranging from 175 kms–1 (protons) to 1280 kms–1 (Fe+8), and the composition, charge states as well as the 3-dimensional distribution functions of suprathermal ions, including interstellar pick-up He+, of energies up to 230 keV/e. The experiment consists of three instruments with a common Data Processing Unit. Each of the three instruments uses electrostatic analysis followed by a time-of-flight and, as required, an energy measurement. The observations made by SMS will make valuable contributions to the ISTP objectives by providing information regarding the composition and energy distribution of matter entering the magnetosphere. In addition SMS results will have an impact on many areas of solar and heliospheric physics, in particular providing important and unique information on: (i) conditions and processes in the region of the corona where the solar wind is accelerated; (ii) the location of the source regions of the solar wind in the corona; (iii) coronal heating processes; (iv) the extent and causes of variations in the composition of the solar atmosphere; (v) plasma processes in the solar wind; (vi) the acceleration of particles in the solar wind; and (vii) the physics of the pick-up process of interstellar He as well as lunar particles in the solar wind, and the isotopic composition of interstellar helium.  相似文献   

9.
Ion cyclotron waves (hereafter ICW's) generated in the magnetosphere by the ion cyclotron instability of 10–100 keV protons are now known to be the origin of short-period (0.1–5 Hz) electromagnetic field oscillations observed by synchronous spacecraft and on the earth's surface. Observations of the various wave characteristics, including spectral and polarization properties that lead to the identification of generation and propagation mechanisms and regions in the magnetosphere are described with reference to ATS-6, GEOS and ground-based wave data and interpreted using cold plasma propagation theory. The presence of heavy ions (O+, He+) dramatically modifies ICW magnetospheric propagation characteristics giving rise to spectral slots and polarization reversals. These properties may be used in plasma diagnostics. Finally satellite-ground correlations and techniques for determining the magnetospheric source position of ICW's not seen at synchronous orbit but observed on the ground as structured Pc1 pulsations are considered.  相似文献   

10.
Sandel  B.R.  Goldstein  J.  Gallagher  D.L.  Spasojevic  M. 《Space Science Reviews》2003,109(1-4):25-46
The IMAGE Extreme Ultraviolet Imager (EUV) provides our first global images of the plasmasphere by imaging the distribution of He+ in its 30.4-nm resonance line. The images reveal the details of a highly structured and dynamic entity. Comparing EUV images and selected in-situ observations has helped to validate the remote sensing measurements. The brightness in the EUV images is heavily weighted by the He+ density near the plane of the magnetic equator, but two lines of evidence emphasize that the features seen by EUV extend far from the equator, and in at least some cases reach the ionosphere. Certain features and behaviors, including shoulders, channels, notches, and plasma erosion events, appear frequently in the EUV images. These are keys to understanding the ways that electric fields in the inner magnetosphere affect the large and meso-scale distribution of plasma, and their study can elucidate the mechanisms by which the solar wind and interplanetary magnetic field couple to the inner magnetosphere.  相似文献   

11.
The forecast of the terrestrial ring current as a major contributor to the stormtime Dst index and a predictor of geomagnetic storms is of central interest to ‘space weather’ programs. We thus discuss the dynamical coupling of the solar wind to the Earth's magnetosphere during several geomagnetic storms using our ring current-atmosphere interactions model and coordinated space-borne data sets. Our model calculates the temporal and spatial evolution of H+, O+, and He+ ion distribution functions considering time-dependent inflow from the magnetotail, adiabatic drifts, and outflow from the dayside magnetopause. Losses due to charge exchange, Coulomb collisions, and scattering by EMIC waves are included as well. As initial and boundary conditions we use complementary data sets from spacecraft located at key regions in the inner magnetosphere, Polar and the geosynchronous LANL satellites. We present recent model simulations of the stormtime ring current energization due to the enhanced large-scale convection electric field, which show the transition from an asymmetric to a symmetric ring current during the storm and challenge the standard theories of (a) substorm-driven, and (b) symmetric ring current. Near minimum Dst there is a factor of ∼ 10 variation in the intensity of the dominant ring current ion specie with magnetic local time, its energy density reaching maximum in the premidnight to postmidnight region. We find that the O+ content of the ring current increases after interplanetary shocks and reaches largest values near Dst minimum; ∼ 60% of the total ring current energy was carried by O+ during the main phase of the 15 July 2000 storm. The effects of magnetospheric convection and losses due to collisions and wave-particle interactions on the global ring current energy balance are calculated during different storm phases and intercompared. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

12.
Major interplanetary shock waves have often been successfully associated with major solar flares. The interplanetary response to weaker solar events, e.g., eruptive prominences (EP) and slow coronal transients, is far less pronounced. Recently, progress has been made by combining the newly-available data of white-light-coronagraph measurements from the earth-orbiting satellite P78/1 (these data show the development of coronal transients between 2.5 and 10 R bd, in-situ plasma measurements from the HELIOS solar probes positioned mostly above the Sun's limb at solar distances between 60 and 200 R bd (showing the reactions of the interplanetary plasma), ground based Hα-coronagraphs (showing in a few cases the evolution of EP's from the Sun's limb up to 1.5 Abd). In the years 1979 to 1981 about 25 uniquely associated events were identified, 19 of which allow some detailed analysis. The events can be sorted into three main categories:
  • The ‘flare-type’: 13 events, probably all of them flare-related, transient speeds v t from 560 to 1460 km s?1, no evidence for post-acceleration of the transient (indicating impulsive injection), all transients followed by drastic interplanetary shock waves, some of them probably involving magnetic clouds.
  • The ‘EP-type’: 4 events, none of them flare-related, at least one was observed as an Hα-EP, transient speed from 200 to 410 km s-1, all post-accelerated (indicating ‘driven’ injection), all followed by shocks with at least one magnetic cloud, one showing presence of He+ and O2+ behind the shock.
  • The ‘NCDE-type’: 2 events, one observed as an Hα-EP, the other without known solar source, v t , = 130 and 470 km s?1, one post-accelerated, the other one not, considerable density increase in interplanetary plasma (however, in pressure equilibrium with surroundings), one event including shock, the other not. These two events may not belong to the same category.
  • Our results are not completely consistent with previous work which is mainly based on data from the Skylab era, 1973/74. This could be due to the different phase in the solar cycle. The study is being continued.  相似文献   

    13.
    Harvey  P.R.  Curtis  D.W.  Heetderks  H.D.  Pankow  D.  Rauch-Leiba  J.M.  Wittenbrock  S.K.  McFadden  J.P. 《Space Science Reviews》2001,98(1-2):113-149
    The Fast Auroral Snapshot Explorer (FAST) is the second of the Small Explorer Missions which are designed to provide low cost space flight opportunities to the scientific community. FAST performs high time resolution measurements of the auroral zone in order to resolve the microphysics of the auroral acceleration region. Its primary science objectives necessitate high data volume, real-time command capability, and control of science data collection on suborbital time scales. The large number of instruments requires a sophisticated Instrument Data Processing Unit (IDPU) to organize the data into the 1 Gbit solid state memory. The large data volume produced by the instruments requires a flexible memory capable of both high data rate snapshots (12 Mbit s–1) and coarser survey data collection (0.5 Mbit s–1) to place the high rate data in context. In order to optimize the science, onboard triggering algorithms select the snapshots based upon data quality. This paper presents a detailed discussion of the hardware and software design of the FAST IDPU, describing the innovative design that has been essential to the FAST mission's success.  相似文献   

    14.
    Recent improvements in experimental techniques and cooperative data analysis efforts have brought a lot of information on the basic mechanisms by which energy can be exchanged between different particle species in the collisionless magnetospheric or solar wind plasmas. Some of these mechanisms are reviewed. A particular emphasis is put on interactions which occur in the equatorial magnetosphere between energetic protons and electromagnetic ultra low frequency (ULF) waves and which are linked with He+ ion trapping and heating as well as with field-aligned suprathermal electron beam generation. The process by which ion conic distributions are produced by electrostatic ion cyclotron waves generated at high altitude along auroral field lines by drifting electrons is also discussed.  相似文献   

    15.
    The magnetometer on the POLAR Spacecraft is a high precision instrument designed to measure the magnetic fields at both high and low altitudes in the polar magnetosphere in 3 ranges of 700, 5700, and 47000 nT. This instrument will be used to investigate the behavior of fieldaligned current systems and the role they play in the acceleration of particles, and it will be used to study the dynamic fields in the polar cusp, magnetosphere, and magnetosheath. It will measure the coupling between the shocked magnetosheath plasma and the near polar cusp magnetosphere where much of the solar wind magnetosphere coupling is thought to take place. Moreover, it will provide measurements critical to the interpretation of data from other instruments. The instrument design has been influenced by the needs of the other investigations for immediately useable magnetic field data and high rate (100+vectors s–1) data distributed on the spacecraft. Data to the ground includes measurements at 10 vectors per second over the entire orbit plus snapshots of 100 vectors per second data. The design provides a fully redundant instrument with enhanced measurement capabilities that can be used when available spacecraft power permits.  相似文献   

    16.
    Temporal and Spatial Variation of the Ion Composition in the Ring Current   总被引:3,自引:0,他引:3  
    A global view of the ring current ions is presented using data acquired by the instrument MICS onboard the CRRES satellite during solar maximum. The variations of differential intensities, energy spectra, radial profile of the energetic particles and the origin of the magnetic local time (MLT) asymmetry of the ring current have been investigated in detail. O+ ions are an important contributor to the storm time ring current. Its abundance in terms of number density increases with increasing geomagnetic activity as well as its energy density. However, a saturation value for the energy density of O+ ions has been found. The low-energy H+ ions show a dramatic intensification and a rapid decay. However, its density ratio during the storm maximum is almost constant. On the other hand, high-energy H+ ions first exhibit a flux decrease followed by a delayed increase. Its density ratio shows an anti-correlation with the storm intensity. Both the positions of the maximum flux of O+ and He+ depend on storm activity: they move to lower altitudes in the early stage of a storm and move back to higher L-values during the recovery phase. Whereas the position of H+ and He++ show almost no dependence on the Dst index. The energy density distributions in radial distance and magnetic local time show drastic differences for different ion species. It demonstrates that the ring current asymmetry mainly comes from oxygen and helium ions, but not from protons. The outward motion of O+ around local noon may have some implications for oxygen bursts in the magnetosheath during IMF Bz negative conditions as observed by GEOTAIL.  相似文献   

    17.
    We have studied the loss of O+ and O+ 2 ions at Mars with a numerical model. In our quasi-neutral hybrid model ions (H+, He++, O+, O+ 2) are treated as particles while electrons form a massless charge-neutralising fluid. The employed model version does not include the Martian magnetic field resulting from the crustal magnetic anomalies. In this study we focus the Martian nightside where the ASPERA instrument on the Phobos-2 spacecraft and recently the ASPERA-3 instruments on the Mars Express spacecraft have measured the proprieties of escaping atomic and molecular ions, in particular O+ and O+ 2 ions. We study the ion velocity distribution and how the escaping planetary ions are distributed in the tail. We also create similar types of energy-spectrograms from the simulation as were obtained from ASPERA-3 ion measurements. We found that the properties of the simulated escaping planetary ions have many qualitative and quantitative similarities with the observations made by ASPERA instruments. The general agreement with the observations suggest that acceleration of the planetary ions by the convective electric field associated with the flowing plasma is the key acceleration mechanism for the escaping ions observed at Mars.  相似文献   

    18.
    Observations bearing on the nature and properties of the interplanetary plasma are reviewed, and consideration is given to possible fruitful directions for further work. The observations are classified according as they involve traditional (comet tail, optical, geomagnetic, cosmic ray), radio (solar noise, radar, radio-source scattering and scintillation, space-probe transmission) or direct (space-probe) measurements. A fairly complete set of references up to September 1967 is given for the cases of comet tail, radar, radio-source scattering and scintillation, and space-probe measurements.An important development concerns observations of the composition of the solar wind. High-resolution measurements of the positive ion energy per charge spectra have been made using the Vela-3 satellites (Bame et al., 1968). Ionic components other than H+ and He++ have been detected, notably the various ions of oxygen, O+5, O+6, O+7, (Hundhausen et al., 1968). A promising technique for unambiguously distinguishing H+ and He++ ions, based on velocity as well as energy per unit charge, has been flown successfully on the satellite IMP-F by Ogilvie and Williamson (1968).This research was supported by the Advanced Research Projects Agency (Project DEFENDER) and was monitored by the U.S. Army Research Office — Durham under Contract DA-31-124-ARO-D-257.  相似文献   

    19.
    Cassini Plasma Spectrometer Investigation   总被引:1,自引:0,他引:1  
    《Space Science Reviews》2004,114(1-4):1-112
    The Cassini Plasma Spectrometer (CAPS) will make comprehensive three-dimensional mass-resolved measurements of the full variety of plasma phenomena found in Saturn’s magnetosphere. Our fundamental scientific goals are to understand the nature of saturnian plasmas primarily their sources of ionization, and the means by which they are accelerated, transported, and lost. In so doing the CAPS investigation will contribute to understanding Saturn’s magnetosphere and its complex interactions with Titan, the icy satellites and rings, Saturn’s ionosphere and aurora, and the solar wind. Our design approach meets these goals by emphasizing two complementary types of measurements: high-time resolution velocity distributions of electrons and all major ion species; and lower-time resolution, high-mass resolution spectra of all ion species. The CAPS instrument is made up of three sensors: the Electron Spectrometer (ELS), the Ion Beam Spectrometer (IBS), and the Ion Mass Spectrometer (IMS). The ELS measures the velocity distribution of electrons from 0.6 eV to 28,250 keV, a range that permits coverage of thermal electrons found at Titan and near the ring plane as well as more energetic trapped electrons and auroral particles. The IBS measures ion velocity distributions with very high angular and energy resolution from 1 eV to 49,800 keV. It is specially designed to measure sharply defined ion beams expected in the solar wind at 9.5 AU, highly directional rammed ion fluxes encountered in Titan’s ionosphere, and anticipated field-aligned auroral fluxes. The IMS is designed to measure the composition of hot, diffuse magnetospheric plasmas and low-concentration ion species 1 eV to 50,280 eV with an atomic resolution M/ΔM ∼70 and, for certain molecules, (such asN 2 + and CO+), effective resolution as high as ∼2500. The three sensors are mounted on a motor-driven actuator that rotates the entire instrument over approximately one-half of the sky every 3 min.This revised version was published online in July 2005 with a corrected cover date.  相似文献   

    20.
    Heavy ions in the magnetosphere   总被引:2,自引:0,他引:2  
    For purposes of this review heavy ions include all species of ions having a mass per unit charge of 2 AMU or greater. The discussion is limited primarily to ions in the energy range between 100 eV and 100 keV. Prior to the discovery in 1972 of large fluxes of energetic O+ ions precipitating into the auroral zone during geomagnetic storms, the only reported magnetosphere ion species observed in this energy range were helium and hydrogen. More recently O+ and He+ have been identified as significant components of the storm time ring current, suggesting that an ionosphere source may be involved in the generation of the fluxes responsible for this current. Mass spectrometer measurements on board the S3-3 satellite have shown that ionospheric ions in the auroral zone are frequently accelerated upward along geomagnetic field lines to several keV energy in the altitude region from 5000 km to greater than 8000 km. These observations also show evidence for acceleration perpendicular to the magnetic field and thus cannot be explained by a parallel electric field alone. This auroral acceleration region is most likely the source for the magnetospheric heavy ions of ionospheric origin, but further acceleration would probably be required to bring them to characteristic ring current energies. Recent observations from the GEOS-1 spacecraft combined with earlier results suggest comparable contributions to the hot magnetopheric plasma from the solar wind and the ionosphere.Proceedings of the Symposium on Solar Terrestrial Physics held in Innsbruck, May–June 1978.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号