首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
本文计算了非热电子束流通过库仑碰撞和反向电流过程在均匀截面的耀斑环中的能量沉积,讨论了非热电子束流对耀斑软X射线等离子体的加热和耀斑非热模型的能量收支平衡问题。   相似文献   

2.
本文利用SMM卫星的X射线资料,以及云南天文台的光学观测资料,分析了1980年7月14日的3B级耀斑.求得X射线耀斑能谱随时间的变化;计算了耀斑爆发时加速的电子总数和电子的平均能量;并测量和比较了Hα耀斑和X射线爆源的位置.结果表明:(1)硬X射线爆由高能非热电子束引起;(2)软X射线爆基本上由高温等离子体的热韧致辐射所产生,但必须考虑非热电子轫致辐射的贡献;(3)确定X射线爆源的高度,有赖于耀斑模型及活动区磁场位形.所得结果支持耀斑过程的新浮磁流模型(EMF模型).  相似文献   

3.
太阳耀斑显著的热和非热事件的统计特征   总被引:1,自引:1,他引:0  
本文利用GOES卫星和SMM卫星软、硬X射线耀斑观测资料,分析耀斑中软、硬X射线辐射流量的分布,发现太阳耀斑存在着显著的热事件(PT事件)和显著的非热事件(PNT事件),它们主要特征是:(1)PT事件为缓变型耀斑,PNT事件为脉冲型耀斑;(2)PT事件的硬X射线谱较软,PNT事件能谱较硬;(3)PNT事件非热能量释放速率比PT事件快3—10倍;(4)耀斑发展趋缓慢,PT事件中软X射线峰值流量越大;(5)耀斑中PNT事件约占60%,PT事件约占40%.最后定性讨论了产生PT和PNT事件的可能机制.   相似文献   

4.
本文利用云南天文台耀斑Hα巡视观测、活动区白光照相及速度场资料,结合SMM的X射线资料和北京天文台的射电观测资料,对1980年7月14日日面3B级大耀斑进行了综合研究。对照耀斑过程的磁流浮现(EMF)模型,我们分析了活动区的形态变化特征,估算了耀斑释放的磁能、耀斑过程的特征时间及耀斑爆发时加速的电子总数和加速电子的平均能量。结果表明:(1)耀斑过程的EMF模型与观测结果基本符合,可以认为EMF模型能够较好地说明耀斑的物理过程。(2)根据对速度场资料及耀斑产生位置的分析,初步认为电流片可能位于速度中性线与磁中性线的交点处及其附近,或速度中性线与暗条的交点处及其附近[3]。(3)观测和计算表明,硬x射线爆是由电流片中加速的高能非热电子所产生,而软X射线爆则由耀斑区的高温等离子体的热轫致辐射所产生。   相似文献   

5.
利用光学、射电、软X射线和硬X射线观测资料,对1986年2月系列太阳爆发中最大的两个耀斑作相似与相异性的分析,解释它们近地空间效应的区别,对该系列太阳爆发事件和叠加在一起的地球事件作认证研究。  相似文献   

6.
本文在统一模型的考虑下,对1983年2月3日太阳3B级Hα双带耀斑和共生的爆发事件进行了综合分析研究.探讨了其中主要的共生辐射的物理过程和内在联系,并讨论了Ⅲ型、Ⅳ型和微波射电爆发源的非热电子束流对产生Hα双带耀斑和硬X射线爆发所起的重要作用.  相似文献   

7.
AR5395和AR5629X射线事件的太阳射电辐射特征吴洪敖,孙九祯(中同科学院紫金山天文台,南京210008)关键词太阳耀斑,X射线事件,射电事件一、概况本文选用的典型事件是1989年3月的AR5395和8月的AR5629的射电缓变和爆发分量,及其...  相似文献   

8.
对ISEE-3人造卫星在1980年5月—1981年8月中,观测到的48个X射线耀斑进行了分析,发现其中有1/3是在6个活动区中重复爆发的.研究这部分X射线耀斑的物理性质与所在活动区的黑子面积、活动区类型及磁结构的关系,得到了一些结果:(1)发生在同一活动区中的X射线耀斑,其硬X射线峰值积分流量及谱硬度与活动区黑子面积成正相关;(2)多次爆发X射线耀斑的活动区全部具有δ型磁结构;(3)发生在不同活动区中的X射线耀斑,其物理特征与所在活动区的面积大小无明显关系.由此可以认为,活动区磁场梯度的大小,亦即活动区电流的大小,在爆发耀斑的过程中具有决定性作用.此外,还用电流环模型从理论上讨论了上述特征.  相似文献   

9.
利用云南天文台1980年7月14日3B级双带耀斑的光学观测资料,以及SMM卫星对同一耀斑的X射线观测结果,讨论日面耀斑环中物质的运动规律。先比较耀斑Hα象和X射线象的日面位置,根据投影效应确定耀斑环的高度;然后从理论上估算由于耀斑环中物质下落,所形成的耀斑活动区视向速度的分布。所得结果与观测资料基本相符。   相似文献   

10.
为了更加准确地判断X级耀斑是否引发质子事件,对X级质子耀斑和非质子耀斑的耀斑积分通量、源区、CME速度、CME角宽度、背景太阳风速度及背景X射线通量的分布进行了统计研究.发现非质子耀斑和质子耀斑的积分通量、经度、CME速度和CME角宽度具有明显不同的分布.非质子耀斑大多集中在东部,耀斑积分通量小于0.3J·m-2,CME速度小于1300km·s-1的区域内;质子耀斑大多集中在中部或西部,耀斑积分通量大于0.3J·m-2,CME速度大于1300km·s-1的区域内.质子耀斑伴随的CME角宽度主要集中在360°,非质子耀斑的CME角宽度分布则相对分散.两类耀斑的背景太阳风速度和背景X射线通量分布差别不大.利用两类耀斑各个参量分布上的差异,有望提高X级耀斑预报的准确率.   相似文献   

11.
Coronal magnetic field and nonthermal electrons are very important parameters for understanding of the global heliophysical processes. A flare on November 1, 2004 is selected for self-consistent calculations of coronal magnetic field parallel and perpendicular to the line-of-sight, and density of nonthermal electrons from Nobeyama observations. Both of the diagnosis methods and results are discussed in this paper.  相似文献   

12.
Very Large Array (VLA) observations at 20 and 91 cm wavelength are compared with data from the SOHO (EIT and MDI) and RHESSI solar missions to investigate the evolution of decimetric Type I noise storms and Type III bursts and related magnetic activity in the photosphere and corona. The combined data sets provide clues about the mechanisms that initiate and sustain the decimetric bursts and about interactions between thermal and nonthermal plasmas at different locations in the solar atmosphere. On one day, frequent, low-level hard X-ray flaring observed by RHESSI appears to have had no clear affect on the evolution of two closely-spaced Type I noise storm sources lying above the target active region. EIT images however, indicate nearly continuous restructuring of the underlying EUV loops which, through accompanying low-level magnetic reconnection, might give rise to nonthermal particles and plasma turbulence that sustain the long-lasting Type I burst emission. On another day, the onset of an impulsive hard X-ray burst and subsequent decimetric burst emission followed the gradual displacement and coalescence of a small patch of magnetic magnetic polarity with a pre-existing area of mixed magnetic polarity. The time delay of the impulsive 20 and 91 cm bursts by up to 20 min suggests that these events were unlikely to represent the main sites of flare electron acceleration, but instead are related to the rearrangement of the coronal magnetic field after the main flare at lower altitude. Although the X-ray flare is associated with the decimetric burst, the brightness and structure of a long-lasting Type I noise storm from the same region was not affected by the flare. This suggests that the reconfiguration of the coronal magnetic fields and the subsequent energy release that gave rise to the impulsive burst emission did not significantly perturb that part of the corona where the noise storm emission was located.  相似文献   

13.
We examined the relation between the evolutions of the H flare ribbons and the released magnetic energiesat a solar flare which occurred on 2001 April 10. This is the first study to evaluate the released energy quantitatively, based on the magnetic reconnection model, and by using the data obtained with the multi wavelength observation. We measured the, photospheric magnetic field strengths and the separation speeds of the fronts of the H flare ribbon, and compared them the nonthermal behaviors observed in HXRs and microwaves. Those nonthermal radiation sources tell us when and where large energy releases occur. Then, by using the photospheric and chromospheric features, we estimated the released magnetic energy at the flare. The estimated energy release rates at the H kernels associated with the HXR sources are locally large enough to explain the difference between the spatial distribution the H kernels and the HXR sources. Their temporal evolution of the energy release rates also shows peaks corresponding to HXR bursts.  相似文献   

14.
We studied the M3.7 class flare which occurred on 2005 July 27, in the active region NOAA 10792. This flare is an over-the-limb flare, and the footpoints are entirely occulted by the solar disk. The microwave and the hard X-ray images obtained with the Nobeyama Radioheliograph and the RHESSI satellite, respectively, clearly showed emission sources above the post-flare loop system. We examined the emission sources in detail spatially, temporally, and spectroscopically. As a result, one of the hard X-ray emission sources and the microwave emission source are nonthermal.  相似文献   

15.
Simultaneous observations of a microwave burst at 2 and 6 cm wavelengths were carried out with the Very Large Array (VLA). The 6 cm burst source is located close to a magnetic neutral line, presumably near the top of a flaring loop, while the 2 cm emission originates from the footpoints of the loop. It is concluded that the 6 cm emission is dominated by gyrosynchrotron radiation of the thermal electrons in the bulk heated plasma at a temperature of ~ 4 × 107 K, while the 2 cm emission is due to nonthermal particles released and accelerated during the flare process. From the observed low degree of polarization and the lack of the 2 cm source cospatiality with the 6 cm source a magnetic field of 200–350 G and δ ? 4 are estimated in the flare energy release site. A DC electric field flare model is invoked to explain the long delay between the peaks at the two wavelengths. From the delay, the strength of the electric field is estimated to be 0.2–4 μ statvolt cm?1 in the flaring region.  相似文献   

16.
通过分析"云南天文台4波段太阳射电快速同步观测系统"1990-01-1994-01取得的103个射电爆发,发现其中29个存在不同类型的快速精细结构(FFS).尤其是发现了几个少见的亚类FFS现象.本文仅介绍两个亚类型:窄带变周期脉动和宽带慢漂移长周期脉动.这些现象表明太阳射电FFS的多样性,它们发生在射电爆发的不同阶段(耀斑不同相),从而说明在耀斑演化中日冕非热电子的加速或注入可能贯穿于整个耀斑发展过程.由于耀斑后相FFS的发生,可验证耀斑后相存在磁重联和似环结构(耀斑后环)的重新形成.由于不同的亚类FFS反映日冕中存奇特别的环境条件,从而推测日冕中可能存在更复杂的多重类型的磁结构.   相似文献   

17.
Recent advances have enabled simultaneous Hα and X-ray observations with substantially improved spatial, spectral, and temporal resolution. In this paper we study two events observed as part of a coordinated observing program between the Solar Maximum Mission and Sacramento Peak Observatory: the flares of 1456 UT, 7 May 1980 and 1522 UT, 24 June 1980. Using recently-developed physical models of static flare chromospheres, and corresponding theoretical Hα line profiles, we can distinguish effects of intense nonthermal electron heating from those of high conduction and pressure from the overlying flare corona. Both flares show the signature of intense chromospheric heating by fast electrons, temporally correlated with X-ray light curves at E > 27keV, and spatially associated with X-ray emission sites at E >62; 16 keV. Interpreting the Hα line profile observations using the theoretical Hα line profiles, we infer values of the thick-target input power contained in nonthermal electrons that are observationally indistinguishable (within a factor of 2–3) from those inferred from the X-ray data. Although these events are small, the energy flux values are large: of order 1011 ergs cm?2 s?1 above 20 keV.  相似文献   

18.
Active region (AR) NOAA 11476 produced a series of confined plasma ejections, mostly accompanied by flares of X-ray class M, from 08 to 10 May 2012. The structure and evolution of the confined ejections resemble that of EUV surges; however, their origin is associated to the destabilization and eruption of a mini-filament, which lay along the photospheric inversion line (PIL) of a large rotating bipole. Our analysis indicate that the bipole rotation and flux cancellation along the PIL have a main role in destabilizing the structure and triggering the ejections. The observed bipole emerged within the main following AR polarity. Previous studies have analyzed and discussed in detail two events of this series in which the mini-filament erupted as a whole, one at 12:23 UT on 09 May and the other at 04:18 UT on 10 May. In this article we present the observations of the confined eruption and M4.1 flare on 09 May 2012 at 21:01 UT (SOL2012-05-09T21:01:00) and the previous activity in which the mini-filament was involved. For the analysis we use data in multiple wavelengths (UV, EUV, X-rays, and magnetograms) from space instruments. In this particular case, the mini-filament is seen to erupt in two different sections. The northern section erupted accompanied by a C1.6 flare and the southern section did it in association with the M4.1 flare. The global structure and direction of both confined ejections and the location of a far flare kernel, to where the plasma is seen to flow, suggest that both ejections and flares follow a similar underlying mechanism.  相似文献   

19.
SN 1006 is one of the supernova remnants (SNRs) with relatively low-temperature electrons, considering the young age of just 1000 years. We carried out SN 1006 mapping observations with the X-ray Imaging Spectrometers (XIS) and the Hard X-ray Detector (HXD) onboard Suzaku, the fifth Japanese X-ray satellite. Thanks to the excellent spectral resolution of XIS in the soft X-ray band, H-like and He-like oxygen emission lines were clearly detected, and we could make a map of the line intensity, and as well as a flux and the photon index of nonthermal component. We found that these parameters have spatial dependences from region to region in the SNR; the north region is bright in nonthermal, while dim in thermal; the east region is bright in both nonthermal and thermal; the inner region shows dim nonthermal and bright thermal emission. The photon index is the smallest in the north region.  相似文献   

20.
The footpoint motions of flare hard X-ray (HXR) sources are directly related to the reconnection scenario of a solar flare. In this work, we tried to extract the information of footpoint motions for a number of flares observed with RHESSI. We found that the RHESSI flare results of the footpoint motions strongly support the classification proposed from the observations of YOHKOH/HXT. Furthermore, it is found that a flare can consist of two types of footpoint motions. We discussed the connections of the footpoint motions with the two-dimensional reconnection models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号