首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
THEMIS—a five-spacecraft constellation to study magnetospheric events leading to auroral outbursts—launched on February 17, 2007. All aspects of operations are conducted at the Mission Operations Center at the University of California at Berkeley. Activities of the multi-mission operations team include mission and science operations, flight dynamics and ground station operations. Communications with the constellation are primarily established via the Berkeley Ground Station, while NASA’s Ground Network provides secondary pass coverage. In addition, NASA’s Space Network supports maneuver operations near perigee. Following a successful launch campaign, the operations team performed on-orbit probe bus and instrument check-out and commissioning tasks, and placed the constellation initially into a coast phase orbit configuration to control orbit dispersion and conduct initial science operations during the summer of 2007. Mission orbit placement was completed in the fall of 2007, in time for the first winter observing season in the Earth’s magnetospheric tail. Over the course of the first 18 months of on-orbit constellation operations, procedures for instrument configuration, science data acquisition and navigation were refined, and software systems were enhanced. Overall, the implemented ground systems at the Mission Operations Center proved to be very successful and completely adequate to support reliable and efficient constellation operations. A high degree of systems automation is employed to support lights-out operations during off-hours.  相似文献   

2.
The International Solar-Terrestrial Physics (ISTP) program will provide simultaneous coordinated scientific measurements from most of the major areas of geospace including specific locations on the Earth's surface. This paper describes the comprehensive ISTP ground science data handling system which has been developed to promote optimal mission planning and efficient data processing, analysis and distribution. The essential components of this ground system are the ISTP Central Data Handling Facility (CDHF), the Information Processing Division's Data Distribution Facility (DDF), the ISTP/Global Geospace Science (GGS) Science Planning and Operations Facility (SPOF) and the NASA Data Archive and Distribution Service (NDADS).The ISTP CDHF is the one place in the program where measurements from this wide variety of geospace and ground-based instrumentation and theoretical studies are brought together. Subsequently, these data will be distributed, along with ancillary data, in a unified fashion to the ISTP Principal Investigator (PI) and Co-Investigator (CoI) teams for analysis on their local systems. The CDHF ingests the telemetry streams, orbit, attitude, and command history from the GEOTAIL, WIND, POLAR, SOHO, and IMP-8 Spacecraft; computes summary data sets, called Key Parameters (KPs), for each scientific instrument; ingests pre-computed KPs from other spacecraft and ground basel investigations; provides a computational platform for parameterized modeling; and provides a number of data services for the ISTP community of investigators. The DDF organizes the KPs, decommutated telemetry, and associated ancillary data into products for duistribution to the ISTP community on CD-ROMs. The SPOF is the component of the GGS program responsible for the development and coordination of ISTP science planning operations. The SPOF operates under the direction of the ISTP Project Scientist and is responsible for the development and coordination of the science plan for ISTP spacecraft. Instrument command requests for the WIND and POLAR investigations are submitted by the PIs to the SPOF where they are checked for science conflicts, forwarded to the GSFC Command Management Syntem/Payload Operations Control Center (CMS/POCC) for engineering conflict validation, and finally incorporated into the conflict-free science operations plan. Conflict resolution is accomplished through iteration between the PIs, SPOF and CMS and in consultation with the Project Scientist when necessary. The long term archival of ISTP KP and level-zero data will be undertaken by NASA's National Space Science Data Center using the NASA Data Archive and Distribution Service (NDADS). This on-line archive facility will provide rapid access to archived KPs and event data and includes security features to restrict access to the data during the time they are proprietary.  相似文献   

3.
This paper describes the engineering solutions to erect a back-side lunar observatory as a national asset. It describes landing at the lunar sites and methods of communicating data to and from Earth via comsats or a relay station on the Earth-side. The paper suggests a sequential construction of the sensor array, power supply, and communication equipment. It describes the likely revisits to the sites for periodic maintenance. The observatory is technically feasible and awaits a detailed design study to site the lunar equipment and choose among several alternatives, for example; the location of the array, the power supply and the communication channels. An Earth command center will be needed to archive and distribute data to principal investigators.  相似文献   

4.
Harvey  P.R.  Curtis  D.W.  Heetderks  H.D.  Pankow  D.  Rauch-Leiba  J.M.  Wittenbrock  S.K.  McFadden  J.P. 《Space Science Reviews》2001,98(1-2):113-149
The Fast Auroral Snapshot Explorer (FAST) is the second of the Small Explorer Missions which are designed to provide low cost space flight opportunities to the scientific community. FAST performs high time resolution measurements of the auroral zone in order to resolve the microphysics of the auroral acceleration region. Its primary science objectives necessitate high data volume, real-time command capability, and control of science data collection on suborbital time scales. The large number of instruments requires a sophisticated Instrument Data Processing Unit (IDPU) to organize the data into the 1 Gbit solid state memory. The large data volume produced by the instruments requires a flexible memory capable of both high data rate snapshots (12 Mbit s–1) and coarser survey data collection (0.5 Mbit s–1) to place the high rate data in context. In order to optimize the science, onboard triggering algorithms select the snapshots based upon data quality. This paper presents a detailed discussion of the hardware and software design of the FAST IDPU, describing the innovative design that has been essential to the FAST mission's success.  相似文献   

5.
The ATS-6 is the most advanced experimental satellite that has evolved from the Application Technology Satellite Program conducted and implemented by NASA Goddard Space Flight Center (NASA/GSFC). This project utilizes a state-of-the-art spacecraft and ground terminal network to perform advance studies and to conduct technological demonstrations in a large number of scientific areas. The design and implementation of this unique spacecraft permitted multiple experimentation simultaneously. The control of the spacecraft is performed at ATS Operational Control Center (ATSOCC) located at NASA/GSFC. Experimentation which was performed covered a wide spectrum of communications, technological, meterorological, and scientific subjects. Three principal ground terminals are utilized to assist the experimenters to acquire data. Data reduction and analysis are performed by the many facilities at NASA/GSFC in support of the experimenters.  相似文献   

6.
The Fast Auroral SnapshoT (FAST) satellite was launched by a Pegasus XL on August 21, 1996. This was the second launch in the NASA SMall EXplorer (SMEX) program. Early in the mission planning the decision was made to have the University of California at Berkeley Space Sciences Laboratory (UCB-SSL) mechanical engineering staff provide all of the spacecraft appendages, in order to meet the short development schedule, and to insure compatibility. This paper describes the design development, testing and on-orbit deployment of these boom systems: the 2 m carbon fiber magnetometer booms, the 58 m tip to tip spin-plane wire booms, and the 7 m dipole axial stiff booms.  相似文献   

7.
Zwickl  R.D.  Doggett  K.A.  Sahm  S.  Barrett  W.P.  Grubb  R.N.  Detman  T.R.  Raben  V.J.  Smith  C.W.  Riley  P.  Gold  R.E.  Mewaldt  R.A.  Maruyama  T. 《Space Science Reviews》1998,86(1-4):633-648
The Advanced Composition Explorer (ACE) RTSW system is continuously monitoring the solar wind and produces warnings of impending major geomagnetic activity, up to one hour in advance. Warnings and alerts issued by NOAA allow those with systems sensitive to such activity to take preventative action. The RTSW system gathers solar wind and energetic particle data at high time resolution from four ACE instruments (MAG, SWEPAM, EPAM, and SIS), packs the data into a low-rate bit stream, and broadcasts the data continuously. NASA sends real-time data to NOAA each day when downloading science data. With a combination of dedicated ground stations (CRL in Japan and RAL in Great Britain), and time on existing ground tracking networks (NASA's DSN and the USAF's AFSCN), the RTSW system can receive data 24 hours per day throughout the year. The raw data are immediately sent from the ground station to the Space Environment Center in Boulder, Colorado, processed, and then delivered to its Space Weather Operations center where they are used in daily operations; the data are also delivered to the CRL Regional Warning Center at Hiraiso, Japan, to the USAF 55th Space Weather Squadron, and placed on the World Wide Web. The data are downloaded, processed and dispersed within 5 min from the time they leave ACE. The RTSW system also uses the low-energy energetic particles to warn of approaching interplanetary shocks, and to help monitor the flux of high-energy particles that can produce radiation damage in satellite systems. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

8.
火星中继已作为火星探测重要组成部分,被美国NASA(National Aeronautics and Space Administration,国家航空航天局)和ESA(European Space Agency,欧空局)广泛应用于火星EDL(Entry,Descent and Landing,进入、下降和着陆)以及火星表面探测中。针对该情况,介绍了火星中继系统的组成和工作情况。结合NASA和ESA火星探测的成功经验和成果,重点对火星轨道器和着陆器的中继应答机的性能进行了梳理和分析,并对该技术的后续发展进行了展望。基于此,可为我国自主火星探测提供借鉴和参考。  相似文献   

9.
Vitally important to the success of any mission is the ground support system used for commanding the spacecraft, receiving the telemetry, and processing the results. We describe the ground system used for the STEREO mission, consisting of the Mission Operations Center, the individual Payload Operations Centers for each instrument, and the STEREO Science Center, together with mission support from the Flight Dynamics Facility, Deep Space Mission System, and the Space Environment Center. The mission planning process is described, as is the data flow from spacecraft telemetry to processed science data to long-term archive. We describe the online resources that researchers will be able to use to access STEREO planning resources, science data, and analysis software. The STEREO Joint Observations Program system is described, with instructions on how observers can participate. Finally, we describe the near-real-time processing of the “space weather beacon” telemetry, which is a low telemetry rate quicklook product available close to 24 hours a day, with the intended use of space weather forecasting.  相似文献   

10.
The Institute of Space and Astronautical Science (ISAS), Japan, is developing a satellite, named MUSES-B, for VLBI (very long baseline interferometry) observations from space. The science observation program using MUSES-B is called the VLBI Space Observatory Programme (VSOP). The satellite is formed as an orbiting radiotelescope with a parabolic antenna of 8 meters diameter. Fine-resolution and high-quality imaging of active galactic nuclei and quasars, and observations of maser sources, are the main science objectives. The satellite will be launched in summer 1996. The satellite operation and science observations will be performed in collaboration with NASA and ground radio observatories around the world  相似文献   

11.
Automatic dependent surveillance-broadcast (ADS-B) is gaining acceptance around the world as the next-generation surveillance technology. It can provide surveillance to air traffic controllers to support today's procedures as well as surveillance in the cockpit to support air-to-air applications. Pilots and ground personnel have begun to benefit from this technology but further benefits from technological improvements can still be realized. These improvements include security, increased data capacity, and advanced applications (4D trajectory and data exchange). To this end research is currently being performed by Sensis Corporation in cooperation with NASA Glenn research center to provide enhancements to the ADS-B UAT (universal access transceiver) data link. The research goal is to encourage user acceptance by improving upon existing capability and usability along with providing a roadmap and demonstrations of future data link capability  相似文献   

12.
组建车务系统运输安全生产指挥中心是一项机制创新,可以解决车务系统内各信息系统资源不共享的问题以及车务站段生产组织乏力的问题,可以合理界定车务系统内的责权利,解决现场安全控制存在盲区。指挥中心应具有安全监控、生产调度、综合查询及分析、应急处理及干部动态管理五项功能。要实现指挥中心功能,必须从软硬件两方面进行建设,并从人员队伍、机构设置、制度建设等方面予以保障。  相似文献   

13.
An Overview of the Fast Auroral SnapshoT (FAST) Satellite   总被引:3,自引:0,他引:3  
Pfaff  R.  Carlson  C.  Watzin  J.  Everett  D.  Gruner  T. 《Space Science Reviews》2001,98(1-2):1-32
The FAST satellite is a highly sophisticated scientific satellite designed to carry out in situ measurements of acceleration physics and related plasma processes associated with the Earth's aurora. Initiated and conceptualized by scientists at the University of California at Berkeley, this satellite is the second of NASA's Small Explorer Satellite program designed to carry out small, highly focused, scientific investigations. FAST was launched on August 21, 1996 into a high inclination (83°) elliptical orbit with apogee and perigee altitudes of 4175 km and 350 km, respectively. The spacecraft design was tailored to take high-resolution data samples (or `snapshots') only while it crosses the auroral zones, which are latitudinally narrow sectors that encircle the polar regions of the Earth. The scientific instruments include energetic electron and ion electrostatic analyzers, an energetic ion instrument that distinguishes ion mass, and vector DC and wave electric and magnetic field instruments. A state-of-the-art flight computer (or instrument data processing unit) includes programmable processors that trigger the burst data collection when interesting physical phenomena are encountered and stores these data in a 1 Gbit solid-state memory for telemetry to the Earth at later times. The spacecraft incorporates a light, efficient, and highly innovative design, which blends proven sub-system concepts with the overall scientific instrument and mission requirements. The result is a new breed of space physics mission that gathers unprecedented fields and particles observations that are continuous and uninterrupted by spin effects. In this and other ways, the FAST mission represents a dramatic advance over previous auroral satellites. This paper describes the overall FAST mission, including a discussion of the spacecraft design parameters and philosophy, the FAST orbit, instrument and data acquisition systems, and mission operations.  相似文献   

14.
Carlson  C.W.  McFadden  J.P.  Turin  P.  Curtis  D.W.  Magoncelli  A. 《Space Science Reviews》2001,98(1-2):33-66
The ion and electron plasma experiment on the Fast Auroral Snapshot satellite (FAST) is designed to measure pitch-angle distributions of suprathermal auroral electrons and ions with high sensitivity, wide dynamic range, good energy and angular resolution, and exceptional time resolution. These measurements support the primary scientific goal of the FAST mission to understand the physical processes responsible for auroral particle acceleration and heating, and associated wave-particle interactions. The instrument includes a complement of 8 pairs of `Top Hat' electrostatic analyzer heads with microchannel plate (MCP) electron multipliers and discrete anodes to provide angle resolved measurements. The analyzers are packaged in four instrument stacks, each containing four analyzers. These four stacks are equally spaced around the spacecraft spin plane. Analyzers mounted on opposite sides of the spacecraft operate in pairs such that their individual 180° fields of view combine to give an unobstructed 360° field of view in the spin plane. The earth's magnetic field is within a few degrees of the spin plane during most auroral crossings, so the time resolution for pitch-angle distribution measurements is independent of the spacecraft spin period. Two analyzer pairs serve as electron and ion spectrometers that obtain distributions of 48 energies at 32 angles every 78 ms. Their standard energy ranges are 4 eV to 32 keV for electrons and 3 eV to 24 keV for ions. These sensors also have deflection plates that can track the magnetic field direction within 10° of the spin plane to resolve narrow, magnetic field-aligned beams of electrons and ions. The remaining six analyzer pairs collectively function as an electron spectrograph, resolving distributions with 16 contiguous pitch-angle bins and a selectable trade-off of energy and time resolution. Two examples of possible operating modes are a maximum time resolution mode with 16 angles and 6 energies every 1.63 ms, or a maximum energy resolution mode with 16 angles and 48 energies every 13 ms. The instrument electronics include mcp pulse amplifiers and counters, high voltage supplies, command/data interface circuits, and diagnostic test circuits. All data formatting, commanding, timing and operational control of the plasma analyzer instrument are managed by a central instrument data processing unit (IDPU), which controls all of the FAST science instruments. The IDPU creates slower data modes by averaging the high rate measurements collected on the spacecraft. A flexible combination of burst mode data and slower `survey' data are defined by IDPU software tables that can be revised by command uploads. Initial flight results demonstrate successful achievement of all measurement objectives.  相似文献   

15.
任务规划系统是无人直升机地面指挥控制站的核心组成部分,是地面指挥控制站规划、感知和管理无人直升机任务的集合。研究和发展任务规划系统是提高无人直升机执行任务效率和降低任务风险的必然趋势。以无人直升机为对象进行了任务规划系统研究,分析了其功能模块组成,并归纳了任务规划系统实现关键技术。  相似文献   

16.
In September 1995, NASA-Goddard held a workshop on low-cost access to space for science missions. The workshop provided briefings on balloons, sounding rockets, Shuttle payloads, and low-cost free-flyer concepts, to provide options of getting experiments into space. This report is the result of a panel session organized with the aim of generating new ideas beyond those presented in the workshop. In addition to the authors, Orlando Figueroa and Paul Ondrus of NASA-Goddard and Richard Zwirnbaum of Computer Sciences Corp. participated in the discussions. The ideas presented do not necessarily reflect the current thinking of NASA managers. Although the panel discussion was focused on the kinds of science missions usually funded by NASA, most of the ideas that were generated are relevant to military and commercial missions as well.  相似文献   

17.
Two types of feedback systems for a command channel are described. a) Complex Feedback?where, for each command, an identification is relayed back over the feedback channel. b) Decision Feedback?where the feedback channel is used only to state whether the satellite recognized the transmission as a command word. For a), the decision as to whether a command was properly received at the satellite is made on the ground, while for b), the decision is made at the satellite, the only purpose of the feedback channel being to cause the ground station to retransmit the command word if the satellite did not recognize the initial transmission. The decision feedback system then amounts to a one-way channel, since the satellite makes a decision after the initial transmission as to whether or not a command word was sent. If the transmitted command word is interpreted as a command, whether correct or not, the ground station has no further control. The following theorem is proved rigorously: ``It is always possible to specify a decision feedback system which gives the same error performance as a given complex feedback system.'  相似文献   

18.
The development of a pitch pointing control system for an advanced high performance fighter aircraft using eigenstructure assignment and command generator tracking schemes is presented. A desired eigenstructure is first chosen to achieve a desired decoupling (i.e., pitch attitude and flight path angle), and to obtain a desired damping and rise time. The command generator tracker is next used to ensure zero steady-state error-to-step commands. The stability robustness to the parameter variations of the closed-loop system is evaluated in the sense of the conditioning of the achieved eigenstructure by using singular value analysis technique. The analysis and synthesis techniques for the pitch pointing control system are illustrated by applying the techniques to F-15 aircraft as a part of the NASA/USAF program named ACTIVE (Advanced Controls for integrated Vehicles)  相似文献   

19.
针对舰载机着舰侧向控制难度较大的问题,借鉴美国海军的“魔毯”(MAGIC CARPET)着舰的先进理念,提出了 1种新的着舰控制方法,即侧向轨迹增量控制。首先,分别从理论上分析了侧向常规控制、侧向轨迹增量控制的控制结构和着舰性能;然后,对 HUD显示符号进行改进;最后,通过实时仿真,比较了这 2种方法的着舰控制效果。结果显示,着舰侧向轨迹增量控制具有 3个优点:1)简易,降低了飞行员的操纵频次和负担;2)直观,着舰侧向操纵更直观,侧向杆量与飞机侧偏修正速率成正比例,而且当横杆回中时飞机能自动跟踪跑道中心线的横向漂移;3)鲁棒,显著提高了对侧风和舰尾流的抑制能力,即使在飞行员不操纵的情况下,飞机也能迅速反应和抑制风干扰。因此,建议在着舰工程中采用侧向轨迹增量控制。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号