首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
等离子体对大折转角扩压叶栅性能影响的机理   总被引:2,自引:2,他引:0  
利用熵和耗散函数分析了某大折转角扩压叶栅内的流动及损失特性,探讨了等离子体减小损失的作用机理。结果表明,分离区仅是低能流体聚集区,而非高损失来源区;等离子体影响叶栅流动的机制可归结为,诱导其作用区上游流体加速降压、在其作用区内构造局部顺压力梯度以及增加电极附近的气流速度;等离子体通过减弱流动分离以减小栅内损失,其本质是通过减小吸力面后半部的分离区或低速区以减弱其与主流的剪切强度和减小强剪切作用区,从而减弱该区域内的耗散;等离子作用下吸力面附近气体流速的增加使得尾迹损失减小,而电极表面附近的粘性摩擦损失增加。  相似文献   

2.
为了探究不同等离子体激励布局对串列叶栅角区流动分离抑制的效果,采用数值仿真方法,在流动分离前施加激励,对不同布局激励前后流场的流场结构和总压损失沿流向分布进行对比,分析了等离子体激励布局对串列叶栅角区流动分离的影响,以及激励对串列叶栅气流掺混的影响。结果表明:在来流马赫数为0.5、攻角为4°时,ACU2布局激励对流动分离有较好的抑制作用,总压损失系数减小10.74%;ACU2-ACU5组合激励对抑制后排叶片的角区分离有较好效果,总压损失系数降低25.09%。  相似文献   

3.
张龙新  杜鑫  刘勋  陈绍文  王松涛 《推进技术》2015,36(11):1662-1668
为进一步优化设计工作做准备,以基于主/被动联合控制技术设计的高负荷扩压叶栅作为研究对象,在进口为高亚声速的条件下,利用数值模拟的方法,详细研究了冲角变化对扩压叶栅壁面流谱以及气动损失的影响。结果表明,负冲角下,后列叶栅内部存在较大尺度的角区分离流动,构成叶栅损失的主要来源;随着冲角增加,流经串列叶栅近端壁处缝隙流道内流体的相对动量增强,后列叶栅角区分离流动受到抑制,端区二次流动损失降低,+3°冲角下,上、下20%叶展区域内总压损失分别降低了4.4%、6.8%,但前列叶栅叶型分离流动加剧,主流区损失增加;合理协调端壁附面层抽吸技术与串列叶栅技术的应用是提升高负荷扩压叶栅全工况气动性能的关键。  相似文献   

4.
基于验证的数值模拟方法,针对带容腔结构的围带式静叶,研究了容腔泄漏流对其性能的影响以及容腔泄漏流与主流的相互干涉作用。在不同的来流附面层厚度下,探讨了叶栅二次流运动和角区分离发展情况,并通过总压损失系数和熵增系数对性能变化进行评判。结果表明:附面层厚度的增加使无容腔扩压叶栅总压损失系数和熵增损失系数增加。容腔泄漏流使叶片前缘出现容腔泄漏涡,并对通道涡的发展和集中脱落涡的大小产生影响;同时容腔泄漏流加强了叶栅通道内的三维流动效应,削弱了近端壁面流体的横向偏转;随着附面层增厚,带容腔的扩压叶栅的总压损失系数和熵增损失系数变化程度不明显。  相似文献   

5.
基于能量耗散率的低速扩压叶栅损失研究   总被引:1,自引:0,他引:1  
田思濛  吴云  张海灯  李应红  李军 《航空学报》2015,36(10):3249-3262
针对无化学反应和热流输入的叶栅有黏不可压流模型,推导出能量耗散率的组分分解式,根据叶栅流场仿真结果进行分析简化,得到由轴向涡量、轴向阻力和剪切力组成的能量耗散率分解式。结合总压损失,分析了耗散各组分在前缘损失、叶表损失和通道损失中的主导因素:轴向涡量项反映旋涡结构,在通道损失中占主要部分,集中在通道涡和分离面附近;轴向阻力项反映扩压和叶表边界层转折造成的流动损失,在前缘损失和叶表损失中占主要部分,集中在叶栅前部的叶表边界层和主流区;剪切力项反映轴向截面速度不均匀性,在叶栅后部的叶表损失和通道损失中占主要部分,集中在叶表、端壁边界层和分离面附近。旋涡结构和耗散各组分分布特征揭示了叶栅通道中旋涡结构与能量耗散之间的分布关系,分离区并不是主要能量耗散区,高能量耗散区主要分布在叶表边界层(叶栅前部由轴向阻力项主导,后部由剪切力项中的υ(∂Vx/∂y)2项主导)、分离面附近(受剪切力项中的υ(∂Vx/∂y)2项和轴向涡量项影响)。大攻角情况下,叶栅通道损失显著增加,正攻角促使轴向涡量项的增长点提前,负攻角则使得叶表边界层的速度剪切加剧。  相似文献   

6.
端壁组合射流对高速扩压叶栅损失特性的影响   总被引:1,自引:1,他引:0       下载免费PDF全文
提出了一种端壁组合射流技术以控制进口马赫数0.67的高速扩压叶栅端区流动。通过前缘射流旋涡可以增强端壁附面层与主流间的流体交换,阻碍横向二次流动,减小角区低能流体堆积;而采用角区射流注入能量能够进一步减弱吸力面侧流动分离。以上组合控制方法可较单独采用前缘或角区射流更有效减小栅内损失,提高其气动性能。当角区射流位于近吸力面侧的分离起始位置附近时,其改善栅内流动的效果最佳;远离吸力面的端壁射流则可抑制端区低能流体横向迁移及其与分离区流体间的相互作用,但其减小损失的效果弱于近吸力面侧的射流。随着射流总压比的增加,组合射流减小损失的效果先增加后减小;过大的总压比会加剧射流与来流间的掺混损失,使得叶栅气动性能恶化。当射流总压比为1.2时,损失减小最大可达12.6%,而射流流量仅相当于叶栅进口流量的0.64%。  相似文献   

7.
数值研究了合成射流控制高速压气机静叶栅吸力面角区分离,对比分析了不同射流结构对叶栅内流场结构及气动性能的影响。研究结果表明:合成射流通过周期性地吹气和吸气推迟角区分离、降低总压损失,由于吹气和吸气阶段的作用效果不同,使得叶栅出口损失系数的改善效果呈现出周期性波动。合成射流对通道涡以及角区二次流的有效控制是其取得良好控制效果的关键,当冲角为2°时,局部、全叶高方案最大可使总压损失系数分别降低22.2%和23.8%。由于局部叶高方案无法控制叶展中部的流动,造成该区域的尾迹损失增大,从而导致其流动控制效果弱于全叶高方案。两种射流结构都具有良好的变工况适应特性,全叶高方案在大冲角时逐渐体现出其优势,当冲角为4°时,总压损失系数的改善幅度相比局部叶高方案提高了2.8%。   相似文献   

8.
高速压气机叶栅旋涡结构及其流动损失研究   总被引:5,自引:0,他引:5  
为揭示高亚声速来流条件下压气机叶栅内部流动特性,对高速压气机叶栅通道内旋涡结构和流动损失的产生与演变规律进行研究。首先建立了数值仿真模型并用实验验证,然后详细研究了叶栅通道内主要旋涡结构、拓扑规律和旋涡模型,最后分析了叶栅通道内流动损失与旋涡结构的内在联系。高速压气机叶栅通道内主要存在马蹄涡、端壁展向涡、通道涡、壁角涡、壁面涡、集中脱落涡和尾缘脱落涡7个集中涡系,通道涡由端壁来流附面层中发展而来,是角区复杂旋涡结构的主要诱因;攻角由0°增大为4°,通道涡的涡核更早地脱落端壁附面层向角区发展,但对角区流动的影响减弱,叶片尾缘未形成明显的集中脱落涡。伴随着集中脱落涡的消失,叶栅固壁面拓扑结构中,叶片尾缘吸力面上没有出现与集中脱落涡对应的分离螺旋点,并且与叶中脱落涡层相对应的分离线和再附线消失,尾缘脱落涡仅包含近端区的一个分支。由总压损失沿流向和展向的变化规律,叶栅通道流动损失主要来源于角区复杂旋涡结构引起的强剪切作用,近端壁区的总压损失与角区主要涡系结构的生成和发展密切相关;攻角由0°增大至4°,角区旋涡的影响能力变弱,近端区流动损失减小,与叶中部位总压损失的差异缩小。  相似文献   

9.
实验研究了变工况条件下由不同掠弯叶片组成的平面扩压叶栅出口总压损失及二次流矢量分布,并给出了叶片表面墨迹流动显示结果。研究表明弯掠叶栅能够最大程度地改善角区流动,避免流动分离,叶栅出口总压损失对冲角变化不敏感,正冲角下总损失增加较小且吸力面角区也不存在明显的分离。通过增大中径处的设计冲角或进行弯掠匹配优化进一步提高变工况性能的潜力巨大,对提高压气机性能具有实际价值。   相似文献   

10.
合成射流控制高速扩压叶栅二次流的数值模拟   总被引:1,自引:1,他引:0  
数值研究了合成射流控制高速扩压叶栅角区分离,并揭示其推迟分离、降低损失的作用机理。研究发现:合成射流可以显著改善叶栅内流场的时空结构,叶栅出口时均总压损失系数最大降低19.8%,静压系数也提高了近8.8%。合成射流通过周期性地吹/吸气有效控制角区分离,吹气阶段的高动量射流流体增大了吸力面附面层及角区流体的能量,吸气阶段则借助于附面层抽吸作用有效减少了高熵、低能流体的堆积,从而增强了角区流体抵抗流向逆压力梯度的能力、并推迟流动分离,且吸气阶段的流动控制效果明显更好。射流角度和射流动量是影响合成射流作用效果的重要参数,近切向的合成射流有利于向附面层注入动量,增大射流动量也有助于增强流动控制效果。析因设计研究表明,射流角度的影响效应更为显著,但与射流动量之间并不存在交互作用。   相似文献   

11.
纵向尾流间隔计算方法研究   总被引:1,自引:0,他引:1  
综合考虑了飞机的速度、翼展、机翼面积、发动机推力等参数,应用空气动力学中的环量计算理论、尾流消散原理等,将动量定理和涡阻力的计算原理应用到尾流间隔的计算,分别建立了纵向尾流间隔计算模型。采用实际数据计算验证模型的正确性。  相似文献   

12.
为了研究加快尾涡消散的机理,以获得更合理的尾流间隔,进行了壁面反弹实验的数值模拟计算。实验采取在模拟机翼后缘安置反弹面的方法,诱发反弹二次涡与主涡相交出现不稳定性,以加快尾流衰减。数值计算运用N-S方程,对雷诺应力项采用Realizableκ-ε涡粘模型进行计算,分析经二次涡干涉后尾涡轴向涡量衰减、涡核下沉运动等参数的变化,以探究反弹二次涡对飞机主涡消散的演变影响。实验结果表明,反弹涡对主涡衰减有明显的促进作用。该实验为人工干预缩减机场尾流间隔的研究奠定了理论基础。  相似文献   

13.
马力  孙槿静  陆利蓬 《航空动力学报》2016,31(10):2405-2414
针对Spalart-Allmaras(S-A)模型在角区分离计算中的问题,将无量纲的压力梯度引入其涡黏性输运方程的生成项,得到了改进的S-A模型.通过对两套含角区分离的低速压气机叶栅进行验证计算发现:与实验结果相比,原始S-A模型所得的分离区偏大,分离区内壁面压力偏低;而改进模型得到了与实验一致的分离区尺寸以及吸力面、压力面压力系数分布等结果.针对S-A模型涡黏性生成项和耗散项的分析表明:引入的无量纲压力梯度有效的识别了角区分离,在分离区内改变了涡黏性的生成、耗散关系,增大了涡黏性,从而缩小了计算所得分离区,同时在主流区保留了原始S-A模型的计算结果,进而带来了良好的改进效果.   相似文献   

14.
大转角透平叶栅叶片正弯曲的实验研究   总被引:4,自引:2,他引:2  
在与大转角透平叶栅叶片反弯曲的实验研究相同实验条件下, 对大转角透平叶栅叶片正弯曲进行了实验研究。结果表明:在大转角透平叶栅中, 叶片正弯曲后同常规直叶片叶栅相比, 前缘涡、通道涡增强, 前缘涡的气泡型分离损失和通道涡的粘性耗散损失增加, 整个叶栅的通流能力下降8.8%, 质量流量平均总损失提高11.4%, 同时, 叶栅出口气流条件也进一步恶化。   相似文献   

15.
利用数值模拟的手段对桥式槽处理机匣的失速机制和扩稳机理进行研究。通过与实壁机匣和全通槽处理机匣的对比分析结果表明:叶尖泄漏和叶片吸力面的分离均会引起叶尖通道堵塞,进而诱发失速。在实壁机匣情况下叶尖泄漏流堵塞叶尖通道是诱发失速的主要原因;全通槽和桥式槽处理机匣均能减弱叶尖泄漏流强度,但是全通槽处理机匣加剧了吸力面的分离,这造成了较大的效率损失;而桥式槽处理机匣能够通过改变抽吸区和喷气区的面积大小控制泄漏流和分离流引发的流道堵塞,从而在裕度提升和效率损失之间取得平衡。研究表明:喷气区面积越大,叶尖攻角越大,吸力面分离越强,压气机效率越低;抽吸区面积越大,泄漏流越弱,压气机的失速裕度越大。  相似文献   

16.
U型槽对高负荷低压涡轮叶型攻角特性影响   总被引:4,自引:1,他引:3  
以某高负荷低压涡轮叶型为研究对象,分析了该叶型在低雷诺数下的攻角特性,并应用了表面嵌壁式U形槽的被动控制方法来提高该叶型的攻角裕度.数值模拟的结果表明:相比较大的正攻角流动状况,叶型较大的负攻角并不会引起吸力面大的流动分离,从而减小了叶型损失;表面嵌壁式U型槽通过推迟分离、加速再附来减小分离泡甚至减小湍流湿面积,从而降低叶型损失;表面嵌壁式U型槽能否提高该叶型的攻角裕度与开槽位置和深度有关系,在±15°攻角范围内72%轴向弦长位置处开槽明显的降低了叶型损失而开槽深度为0.40mm时叶型损失最小.   相似文献   

17.
变工况下超高负荷低压涡轮叶片边界层被动控制   总被引:4,自引:1,他引:3  
张波  李伟  卢新根  朱俊强 《航空动力学报》2012,27(12):2805-2813
以某超高负荷低压涡轮叶型为研究对象,利用数值模拟的方法通过改变来流雷诺数、自由来流湍流强度和攻角等工况,研究了其对叶片边界层特性的影响,并通过在叶片吸力面加凹槽、矩形拌线、圆形拌线等被动控制方式来改善叶型性能,结果表明:随着雷诺数的增大叶型损失逐渐降低;随着自由来流湍流强度的增加叶型损失先减小后增大;随着攻角向负攻角方向变大叶型损失先减小后增大,向正攻角方向变大时叶型损失迅速增大;在雷诺数和湍流强度变化时表面凹槽的控制方式较好,而攻角变化时加矩形拌线和圆形拌线的控制方式较好.3种被动控制方式促发转捩提前发生抑制分离泡,但都会引起湍流湿面积的增加.   相似文献   

18.
为提升某低速风洞大角度扩散段静压恢复性能,降低总压损失至分流隔板的水平,采用计算流体动力学(CFD)方法对该扩散段不同设计方案进行了模拟.采用阻尼网能有效抑制分离,阻尼网布置位置和开孔率对大角度扩散段内的流动状态和总压损失有很大影响.使用直线壁面扩散时,由于扩散角过大,第1层阻尼网对抑制大角度扩散段入口分离效果很弱,总压损失无法达到预期设定指标.采用三次曲线壁面扩散时,总压损失明显降低,小于预期指标,但存在小范围的分离.分级扩散能有效降低总压损失,按照最大静压恢复设计的分级扩散段,避免了入口的气流分离,能大幅度降低总压损失.对分级扩散的进一步研究表明,按照最大静压恢复设计的第1级扩散段扩散角已达到上限,为抑制第3级扩散段的分离,缩短第2级扩散段,减小第3级扩散段扩散角的方法是合理的.通过对不同方案流态的比较得出了最佳的参数匹配,总压损失指标达到了设计要求.因此采用数值模拟能够获得最佳的大角度扩散段设计结果.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号