首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 68 毫秒
1.
Earth rotation parameters (ERPs) are excited by variations in the mass distribution on the Earth’s surface and the exchange of angular momentum between the atmosphere and oceans and the solid Earth. The same mass redistribution causes temporal changes in the gravity field coefficients with the second degree harmonics related to the rotational deformation and hence to changes in the Earth’s inertial tensor. If precise models of the atmospheric and oceanic angular momentum (AM) are available solution for polar motion and degree 2 Stokes harmonics can be unified. In this study we utilize SLR tracking of LAGEOS to compare (i) degree 2 harmonics from ERPs and gravitation, and (ii) LAGEOS excitation functions and geophysical data (mass + motion). Finally, we investigate to what extent a unified approach is possible with current models for AM data and gravity mass change estimated from ERP within orbit determinations.  相似文献   

2.
Atmospheric water vapour plays an important role in phenomena related to the global hydrologic cycle and climate change. However, the rapid temporal–spatial variation in global tropospheric water vapour has not been well investigated due to a lack of long-term, high-temporal-resolution precipitable water vapour (PWV). Accordingly, this study generates an hourly PWV dataset for 272 ground-based International Global Navigation Satellite System (GNSS) Service (IGS) stations over the period of 2005–2016 using the zenith troposphere delay (ZTD) derived from global-scale GNSS observation. The root mean square (RMS) of the hourly ZTD obtained from the IGS tropospheric product is approximately 4 mm. A fifth-generation reanalysis dataset of the European Centre for Medium-range Weather Forecasting (ECMWF ERA5) is used to obtain hourly surface temperature (T) and pressure (P), which are first validated with GNSS synoptic station data and radiosonde data, respectively. Then, T and P are used to calculate the water vapour-weighted atmospheric mean temperature (Tm) and zenith hydrostatic delay (ZHD), respectively. T and P at the GNSS stations are obtained via an interpolation in the horizontal and vertical directions using the grid-based ERA5 reanalysis dataset. Here, Tm is calculated using a neural network model, whereas ZHD is obtained using an empirical Saastamoinen model. The RMS values of T and P at the collocated 693 radiosonde stations are 1.6 K and 3.1 hPa, respectively. Therefore, the theoretical error of PWV caused by the errors in ZTD, T and P is on the order of approximately 2.1 mm. A practical comparison experiment is performed using 97 collocated radiosonde stations and 23 GNSS stations equipped with meteorological sensors. The RMS and bias of the hourly PWV dataset are 2.87/?0.16 and 2.45/0.55 mm, respectively, when compared with radiosonde and GNSS stations equipped with meteorological sensors. Additionally, preliminary analysis of the hourly PWV dataset during the EI Niño event of 2014–2016 further indicates the capability of monitoring the daily changes in atmospheric water vapour. This finding is interesting and significant for further climate research.  相似文献   

3.
Particulate component of the Mars atmosphere composed by micron-sized products of soil weathering and water ice clouds strongly affects the current climate of the planet. In the absence of a dust storm so-called permanent dust haze with τ  0.2 in the atmosphere of Mars determines its thermal structure. Dust loading varies substantially with the season and geographic location, and only the data of mapping instruments are adequate to characterize it, such as TES/MGS and IRTM/Viking. In spite of vast domain of collected data, no model is now capable to explain all observed spectral features of dust aerosol. Several mineralogical and microphysical models of the atmospheric dust have been proposed but they cannot explain the pronounced systematic differences between the IR data (τ = 0.05–0.2) and measurements from the surface (Viking landers, Pathfinder) which give the typical “clear” optical depth of τ  0.5 from one side, and ground-based observations in the UV–visible range showing much more transparent atmosphere, on the other side. Also the relationship between τ9 and the visible optical depth is not well constrained experimentally so far. Future focused measurements are therefore necessary to study Martian aerosol.  相似文献   

4.
Upper atmospheric CO above 24 km has been observed over Poker Flat (147°W, 65°N, altitude 0.61 km), Alaska using ground-based solar absorption infrared spectroscopy. This is the first reported detection of stratospheric–mesospheric CO using this method from the ground. The results clearly indicate that there is a seasonal variation of the CO profile with enhanced abundances in spring while remaining low from May onwards.The Poker Flat Research Range is one of the many measurement sites that constitute the Network for the Detection of Stratospheric Change (NDSC). The method used in this work, estimating the CO partial column abundances above the middle stratosphere, can be applied to spectra observed using FTIR spectrometry at many other NDSC sites. This suggests the availability of this established technique as a new method for CO measurements in the upper atmosphere.  相似文献   

5.
Simultaneous observations of the airglow OH(6,2) band rotational temperature, TOH, and meteor trail ambipolar diffusion coefficient, D, were carried out at Shigaraki (35°N, 136°E), during PSMOS 2003 Campaign, January 28 to February 8, 2003. The OH emission height was estimated by cross correlation analysis of the TOH and D nocturnal variations. A good correlation between TOH and D was obtained at 85 km of altitude. From the nocturnal variations of TOH and D, it is found that the OH emission peak height varied from 88 km before the midnight to 84 km in the early morning. The height variation could be caused by an atmospheric tidal effect in the emission height.  相似文献   

6.
We have developed a method to evaluate the spectrum of solar energetic protons at the top of the Earth’s atmosphere from the measurements of our balloon cosmic ray experiment. By using the Monte Carlo PLANETOCOSMICS code based on Geant4 we compute the interaction of solar protons [10 MeV–10 GeV] with the Earth’s atmosphere. We obtain the angular and energy distributions of secondary particles (p, e, e+, photons, muons) at different atmospheric levels as a function of primary proton spectra. By comparing the calculated depth dependence of the particle flux with the data obtained by our balloon experiment we can deduce the parameters of the solar proton spectrum that best fit the observations. In this paper we discuss our solar proton spectrum estimation method, and present results of its application to selected solar proton events from 2001 to 2005.  相似文献   

7.
Surface neutron counter data are often used as a proxy for atmospheric ionisation from cosmic rays in studies of extraterrestrial effects on climate. Neutron counter instrumentation was developed in the 1950s and relationships between neutron counts, ionisation and meteorological conditions were investigated thoroughly using the techniques available at the time; the analysis can now be extended using modern data. Whilst surface neutron counts are shown to be a good proxy for ionisation rate, the usual meteorological correction applied to surface neutron measurements, using surface atmospheric pressure, does not completely compensate for tropospheric effects on neutron data. Residual correlations remain between neutron counts, atmospheric pressure and geopotential height, obtained from meteorological reanalysis data. These correlations may be caused by variations in the height and temperature of the atmospheric layer at ∼100 hPa. This is where the primary cosmic rays interact with atmospheric air, producing a cascade of secondary ionising particles.  相似文献   

8.
A new convective gravity wave source spectrum parameterization has been implemented in the Whole Atmosphere Community Climate Model version 2 (WACCM2). This parameterization specifies the momentum flux phase speed spectrum of gravity waves in the Tropics based on the properties of underlying convection; Hence, this parameterization provides realistic global estimates of gravity wave activity. In this paper, we show the estimated gravity wave phase speed spectra in the Tropics from a WACCM2 simulation, at the source level and at 85 km. Spatial distribution of gravity wave activity at 85 km is also presented. Subsequently, we discuss the factors that are primarily responsible for the estimated differences in gravity wave distribution across phase speeds with latitude and asymmetries in direction of gravity wave propagation in the mesosphere. We also examine which of the model assumptions can lead to uncertainties in our estimates of mesospheric gravity wave activity and we discuss how these assumptions provide challenges for comparison with observations of gravity waves in the mesosphere.  相似文献   

9.
Mars Global Reference Atmospheric Model (Mars-GRAM 2001) is an engineering-level Mars atmosphere model widely used for many Mars mission applications. From 0 to 80 km, it is based on NASA Ames Mars General Circulation Model (MGCM), while above 80 km it is based on University of Michigan Mars Thermospheric General Circulation Model. Mars-GRAM 2001 and MGCM use surface topography from Mars Global Surveyor Mars Orbiter Laser Altimeter (MOLA). Validation studies are described comparing Mars-GRAM with a global summary data set of Mars Global Surveyor Thermal Emission Spectrometer (TES) data. TES averages and standard deviations were assembled from binned TES data which covered surface to ∼40 km, over more than a full Mars year (February 1999–June 2001, just before start of a Mars global dust storm). TES data were binned in 10° × 10° latitude–longitude bins (36 longitude bins, centered at 5°–355°, by 18 latitude bins, centered at −85° to +85°), and 12 seasonal bins (based on 30° increments of Ls angle). Bin averages and standard deviations were assembled at 23 data levels (temperature at 21 pressure levels, plus surface temperature and surface pressure). Two time-of-day bins were used: local time near 2 or 14 h. Two dust optical depth bins were used: infrared optical depth, either less than or greater than 0.25 (which corresponds to visible optical depth less than or greater than about 0.5). For interests in aerocapture and precision entry and landing, comparisons focused on atmospheric density. TES densities versus height were computed from TES temperature versus pressure, using assumptions of perfect gas law and hydrostatics. Mars-GRAM validation studies used density ratio (TES/Mars-GRAM) evaluated at data bin center points in space and time. Observed average TES/Mars-GRAM density ratios were generally 1 ± 0.05, except at high altitudes (15–30 km, depending on season) and high latitudes (>45°N), or at most altitudes in the southern hemisphere at Ls  90° and 180°. Compared to TES averages for a given latitude and season, TES data had average density standard deviation about the mean of ∼2.5% for all data, or ∼1–4%, depending on time of day and dust optical depth. Average standard deviation of TES/Mars-GRAM density ratio was 8.9% for local time 2 h and 7.1% for local time 14 h. Thus standard deviation of observed TES/Mars-GRAM density ratio, evaluated at matching positions and times, is about three times the standard deviation of TES data about the TES mean value at a given position and season.  相似文献   

10.
Novel measurements of the seasonal variability in mesospheric temperature at low-latitudes have been obtained from Maui, Hawaii (20.8°N, 156.2°W) during a 25-month period from October 2001 to January 2004. Independent observations of the OH (6, 2) Meinel band (peak height ∼87 km) and the O2 (0–1) atmospheric band emission (∼94 km) were made using the CEDAR Mesospheric Temperature Mapper. The data revealed a coherent oscillation in emission intensity and rotational temperature with a well-defined periodicity of 181 ± 7 days. The amplitude of this oscillation was determined to be ∼5–6 K in temperature and ∼8–9% in intensity for both the OH and O2 data sets. In addition, a strong asymmetry in the shape of the oscillation was also observed with the spring maximum significantly larger than the fall peak. These data provide new evidence in support of a semi-annual-oscillation in mesospheric temperature (and airglow emission intensities) and help quantify its seasonal characteristics.  相似文献   

11.
A new narrow beam Doppler radar operating at 3.17 MHz has been installed close to the Andøya Rocket Range in Andenes, Norway in summer 2002 in order to improve the ground based capabilities for measurements of turbulence in the mesosphere. The main feature of the radar is a Mills Cross transmitting/receiving antenna consisting of 29 crossed half-wave dipoles. In combination with the modular transceiver system this provides high flexibility in beam forming and pointing. In general, vertical and oblique beams with a minimum one way half-power full-beam width (HPFW) of 6.6° are used. The observations are usually performed with a height resolution of 1 km and with off-zenith beams at 7.3° directed towards NW, NE, SE, and SW. Turbulence intensities have been estimated from the width of the observed signal spectra using an computationally intensive correction method which requires precise knowledge of the antenna radiation pattern. The program uses real-time measurements of the wind field in all determinations. Turbulent kinetic energy dissipation rates based on radar observations are presented and compared with corresponding climatological summer and winter profiles from rocket measurements, as well as with single profiles from model runs for selected periods from September 2003 to Summer 2004. The mean turbulent kinetic energy dissipation rates based on these radar measurements are about 5 mW/kg at 60 km altitude and about 20 mW/kg at 80 km, in reasonable agreement with mean turbulence intensities obtained from previous rocket soundings at Andenes.  相似文献   

12.
Using high-resolution Hα, CaII 8542 Å and FeI 6302.5 Å Stokes spectral data obtained simultaneously with THEMIS in 2002 September, we have analyzed the spectra and the characteristics of a two-ribbon microflare (MF). The hard X-ray emission provides evidence of non-thermal particle acceleration in the microflare. The two-ribbons are located on either sides of the magnetic polarity inversion line. The non-thermal characteristics mainly appeared at the outer edges of the flare ribbons. It indicates that the instantaneous magnetic reconnection and the particle acceleration mainly took place at the outer edges of the flare ribbons. Using the Hα and CaII 8542 Å line profiles and the non-LTE calculation, we obtain the semi-empirical atmospheric model for the bright kernel of the MF. The result indicates that the temperature enhancement in the chromosphere is about 2000–2500 K.  相似文献   

13.
This paper presents the method for calculation of DC electric field in the atmosphere and the ionosphere generated by model distribution of external electric current in the lower atmosphere. Appearance of such current is associated with enhancement of seismic activity that is accompanied by emanation of soil gases into the atmosphere. These gases transfer positive and negative charged aerosols. Atmospheric convection of charged aerosols forms external electric current, which works as a source of conductivity current in the atmosphere–ionosphere electric circuit. It is shown that DC electric field generated in the ionosphere by this current reaches up to 10 mV/m, while the long-term vertical electric field disturbances excited near the Earth surface do not exceed 100 V/m. Such limitation of the near-ground field is caused by the formation of potential barrier for charged particles at the Earth surface in a process of their transport from soil to atmosphere.  相似文献   

14.
The spatial distribution of the vector of the Stokes parameters characterizing the radiance intensity and the radiance polarization describes the radiation field in the atmosphere. A simplified treatment of light as the scalar has only restricted application. A few studies compared previously results of the vector and scalar radiative transfer models and showed that scalar models are in error by up to 10% for many cases. Though several observational conditions were exploited, an effect of polarization on modeling of UV radiance has not been investigated yet for twilight. The paper presents a preliminary study of modeled UV radiance during twilight taking into account polarization. The intensity and the degree of linear polarization of the scattered UV radiance for two cases of the ground-based observations are discussed. In the first case, radiation incoming from the zenith for the solar zenith angles (SZA) from 90° to 98° is under investigation. Radiation in the solar principal plane for the beginning of twilight (SZA = 90.1°) was calculated in the second case. The study showed that the UV radiation field in the twilight atmosphere can be handled correctly only using the vector theory. The errors of scalar radiative transfer strongly depend on wavelength, line of an observation and solar position. The revealed distortion of the zenith radiance caused by using of the scalar approximation reaches maximum of 15% at 340 nm for the solar zenith angle (SZA) equal to 98°. The shorter wavelengths have the smaller errors, about 5% at 305 nm for SZA = 98°, due to the larger part of the single scattered radiance. The error of the scalar modeling may be as large as −17% for radiance incoming from the horizon for SZA = 90.1°. Scalar radiative transfer models underestimate the integral intensity in the principal plane up to 3–4% ± 0.5% at SZA = 90.1° for wavelengths from 320 to 340 nm. This should be taken into account in problems of radiative budget estimation and remote sensing of the atmosphere exploiting the twilight period.  相似文献   

15.
In this paper we review the lunar laser ranging conducted by the laser altimeter (LALT) on board the KAGUYA lunar explorer (2007–2009). Five aspects of LALT measurements are described: (1) General operational history, (2) Laser shot and data statistics, (3) Revisions to LALT topographic data, (4) Variations in laser output energy, and (5) Peak height analysis of laser echo pulses. LALT was able to range to the lunar surface despite some troubles with respect to laser output energy in the middle of the KAGUYA mission. The time series topographic data set was revised (Ver. 2) by incorporating new lunar gravity model based on KAGUYA and other historical lunar satellite’s orbit data, along with other improvements, for example by incorporating the accurate position of the laser collimator on board the KAGUYA; however, more than half of the acquired range data could not be converted properly due to problems with orbit accuracy during the extended phase of the mission. The spherical harmonic coefficients and the basic lunar figure parameters derived from LALT_LGT_TS agree very well with LRO-LOLA and the Chang’E-1 LAM model. It is possible that partial failure to the laser diode was responsible for the gradual degradation of laser power (0.835 mJ per million shots) and the rapid decrease that occurred over April 9–14, 2008. The laser power also proved to be extremely sensitive to the temperature of the laser oscillator. The peak height ratio – that is peak height telemetry data divided by calculated ratio – is about 19% on average using the mean slope and albedo data from LALT and Spectral Profiler on KAGUYA space craft, respectively, which suggests the performance of peak height measurement is more than 1/5 for more than 70 km altitude, if compared with calculated one. The peak height ratio may be better if we take the effect of small scale topography within a footprint into account.  相似文献   

16.
Mesospheric temperature trends can be derived from LF phase-height observations in mid-latitudes supported by ionospheric absorption and ionosonde observations. Analysing the full observation period from 1959 until 2003, a mean yearly temperature trend has been derived with −0.25 K/yr for the height interval from 48 to 82 km. Subdividing the whole observation interval in two parts before and after 1979, the trend is markedly stronger in the second period with −0.38 K/yr compared with −0.20 K/yr in the first part before 1979. These differences can at least partly be explained by a steeper CO2 increase and ozone decrease in the second interval. The differences in the mesospheric temperature trends are most evidently expressed during winter months and are markedly smaller during summer season. The reason of this seasonal difference is not quite clear; it may be related with detected ozone trends which are clearly stronger during winter months on both hemispheres.  相似文献   

17.
This paper evaluates orbit accuracy and systematic error for altimeter satellite precise orbit determination on TOPEX, Jason-1, Jason-2 and Jason-3 by comparing the use of four SLR/DORIS station complements from the International Terrestrial Reference System (ITRS) 2014 realizations with those based on ITRF2008. The new Terrestrial Reference Frame 2014 (TRF2014) station complements include ITRS realizations from the Institut National de l’Information Géographique et Forestière (IGN) ITRF2014, the Jet Propulsion Laboratory (JPL) JTRF2014, the Deutsche Geodätisches Forschungsinstitut (DGFI) DTRF2014, and the DORIS extension to ITRF2014 for Precise Orbit Determination, DPOD2014. The largest source of error stems from ITRF2008 station position extrapolation past the 2009 solution end time. The TRF2014 SLR/DORIS complement impact on the ITRF2008 orbit is only 1–2 mm RMS radial difference between 1992–2009, and increases after 2009, up to 5 mm RMS radial difference in 2016. Residual analysis shows that station position extrapolation error past the solution span becomes evident even after two years, and will contribute to about 3–4 mm radial orbit error after seven years. Crossover data show the DTRF2014 orbits are the most accurate for the TOPEX and Jason-2 test periods, and the JTRF2014 orbits for the Jason-1 period. However for the 2016 Jason-3 test period only the DPOD2014-based orbits show a strong and statistically significant margin of improvement. The positive results with DTRF2014 suggest the new approach to correct station positions or normal equations for non-tidal loading before combination is beneficial. We did not find any compelling POD advantage in using non-linear over linear station velocity models in our SLR & DORIS orbit tests on the Jason satellites. The JTRF2014 proof-of-concept ITRS realization demonstrates the need for improved SLR+DORIS orbit centering when compared to the Ries (2013) CM annual model. Orbit centering error is seen as an annual radial signal of 0.4 mm amplitude with the CM model. The unmodeled CM signals show roughly a 1.8 mm peak-to-peak annual variation in the orbit radial component. We find the TRF network stability pertinent to POD can be defined only by examination of the orbit-specific tracking network time series. Drift stability between the ITRF2008 and the other TRF2014-based orbits is very high, the relative mean radial drift error over water is no larger than 0.04 mm/year over 1993–2015. Analyses also show TRF induced orbit error meets current altimeter rate accuracy goals for global and regional sea level estimation.  相似文献   

18.
In the gravimetric approach to determine the Moho depth an isostatic hypothesis can be used. The Vening Meinesz–Moritz isostatic hypothesis is the recent theory for such a purpose. Here, this theory is further developed so that the satellite gravity gradiometry (SGG) data are used for recovering the Moho depth through a nonlinear integral inversion procedure. The kernels of its forward and inverse problems show that the inversion should be done in a larger area by 5° than the desired one to reduce the effect of the spatial truncation error of the integral formula. Our numerical study shows that the effect of this error on the recovered Moho depths can reach 6 km in Persia and it is very significant. The iterative Tikhonov regularization in a combination with either generalized cross validation or quasi-optimal criterion of estimating the regularization parameter seems to be suitable and the solution is semi-convergent up to the third iteration. Also the Moho depth recovered from the simulated SGG data will be more or less the same as that obtained from the terrestrial gravimetric data with a root mean square error of 2 km and they are statistically consistent.  相似文献   

19.
Current status of scientific ballooning in Japan is reviewed. First, I describe successful application of balloon technologies to construct a vessel of transparent plastic film, to contain about 1000 tons of liquid scintillator in Kamioka Liquid Scintillator Anti-Neutrino Detector (KamLAND). KamLAND is a project to study neutrino oscillation phenomena, by detecting anti-neutrinos produced in distant nuclear reactors. Next, I describe high altitude balloons developed by the ISAS balloon group. They developed balloons made from ultra-thin polyethylene film, producing a balloon of volume 60,000 m3 which successfully reached an altitude of 53 km in 2002. This is a world record, the greatest altitude that a balloon has ever achieved. ISAS is applying further effort to develop balloons with even thinner films, to achieve a higher altitude than 53 km. Other recent activities by the ISAS balloon group are briefly described.I also review scientific ballooning projects now operating in Japan, particularly focusing on the Balloon-Borne Experiment with a Superconducting Spectrometer (BESS) program. This is a US–Japan collaborative program that has carried out very precise measurements of antiprotons, protons and other components in primary cosmic rays, as well as measuring the fluxes of atmospheric muons and other components. The results of these observations give us important information to improve our understanding of the production mechanism of antiprotons observed in the primary cosmic rays. The data are also important for analysis of atmospheric neutrino events observed by Super-Kamiokande and other ground-based neutrino detectors. Future prospects of BESS and other balloon-borne cosmic-ray research programs are also presented.  相似文献   

20.
Topographic information is of fundamental importance for various scientific investigations in lunar and planetary exploration. To provide high-precision, seamless mapping capability, it is critical to co-register image and altimetry data, the two major data sources for topographic modeling. This paper presents a method for co-registration of Chang’E-1 (CE-1) stereo images and laser altimeter (LAM) data with crossover adjustment and refinement of the image sensor model. The crossover adjustment is tested in a larger area (0–60°N, 50–0°W); the image refinement and co-registration with LAM data are tested in an area (46.2–50.0°N, 31.8–28.8°W) within the larger area. Experimental results demonstrate that this co-registration reduces the mean differences of inconsistency from more than 200 m to just 3.21 m in the Z direction of object space. In image space, the mean errors of homologous points both in the column and row directions are reduced to below 0.1 pixel. This indicates that the proposed crossover adjustment of LAM data and refinement of the CE-1 stereo image model can effectively improve co-registration of the two data sets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号