首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 100 毫秒
1.
本文介绍了聚丙烯腈原丝碳布酚醛复合材料的研制和鉴定.研究结果表明,这种材料是比人造纤维原丝碳布酚醛复合材料性能更好的一种烧蚀材料,可用它作为固体火箭发动机喷管的主要烧蚀材料.  相似文献   

2.
碳酚醛复合材料由于高的耐烧蚀性,已广泛地用作能承受严酷加热环境的火箭喷管烧蚀层。烧蚀层可用布带缠绕或玫瑰花瓣模压制成,从而获得按要求取向的叠层受气流作用。固体火箭发动机潜入型喷管喉部入口段由于燃烧产物的环流作用,不得不经受严酷的加热环境和粒子冲刷,这要求具有各向异性的烧蚀层材料能均匀烧蚀,预防改变气流路线。目前使用的材料有碳/碳或碳酚醛,尽管3D碳/碳具有所要求的各向异性和耐烧蚀性,但需专用工艺设备,并且价格昂贵。印度已将可变叠层取向的两层或多层碳酚醛烧蚀层用于大型喷管。  相似文献   

3.
固体火箭发动机喷管喉衬烧蚀研究进展   总被引:2,自引:0,他引:2  
在固体火箭发动机工作过程中,由于热化学烧蚀和机械剥蚀的作用,将导致发动机喷管产生烧蚀行为,直接关系到固体火箭发动机的结构可靠性。为了较为深入地了解固体火箭发动机喷管喉衬烧蚀行为及其机理,对国内外固体火箭发动机喷管喉衬烧蚀研究进行了归纳和总结,详细阐明了喉衬烧蚀试验方法、喉衬烧蚀机理及喉衬烧蚀模型;总结了常用的喉衬烧蚀试验方法,并分析了各自优缺点;从热化学烧蚀和机械剥蚀两方面介绍了喉衬烧蚀模型研究进展,分析了目前喉衬烧蚀模型的研究水平。最后,对固体火箭发动机喷管喉衬烧蚀需要开展的工作提出了建议,包括发动机烧蚀率的试验评估方法,喉衬耦合烧蚀计算方法及过载条件对喷管烧蚀的影响规律等,以期为后续研究工作提供一定的借鉴和参考。  相似文献   

4.
喷管扩张段绝热层的烧蚀计算   总被引:7,自引:2,他引:7  
固体火箭发动机喷管的烧蚀预示是喷管结构分析的重要一环,本文用有限元法计算了喷管扩张段绝热层的烧蚀,计算中了对流换热1、材料热解及烧蚀吸热。计算结果与发动机热试车解决结果相近。  相似文献   

5.
NASA于4月10日在马歇尔空间飞行中心的东部试验区成功地进行了一台长6m、直径1.21m的航天飞机先进固体发动机(ASRM)缩比固体火箭发动机试车,试车全程约30s. 这次试车开始了支持航天飞机先进固体发动机研制计划的一组(10次)试验.前5次试车将鉴定新型发动机喷管的候选材料,称为喷管鉴定试验-1(NEr-1).4月10日试车的试验发动机重约18140kg,包括重  相似文献   

6.
为了保证航天飞机每次飞行的成本保持最低,设计时考虑了喷管的金属零件都要重复使用。因为这些零件都是由大型铝和钢锻件机加成的,成本都很高。如果能重复使用19次,喷管柔性接头重复使用9次,那么对于每次飞行来说,就能大幅度地降低成本。航天飞机固体火箭发动机喷管是由作为支承件的大型铝和钢零件组成,这些零件内表面都粘结抗烧蚀绝热层.要重复使用的只是金属构件及柔性接头,因绝热层在工作期间要烧蚀、炭化,每次需重新更换。图1为喷管结构图,该喷管喉径136.86cm,全长424.7cm,出口直径369.9cm。这是当今固体发动机最大的喷管。喷管柔性接头的前法兰与后法兰及  相似文献   

7.
根据不同推进剂及目前热防护材料的性能特点,采用了一种组合药柱的新方法,用来降低喷管内表面的温度和烧蚀率。该方法的主要设计思路是将药柱形式分为前后两段,靠近发动机头部段使用高能推进剂,靠近喷管段使用低燃温推进剂。低燃温推进剂占总推进剂质量百分比的很少一部分。使用这样的组合药柱形式,低燃温推进剂燃烧产生的气体会在喷管内表面形成一层低温帘幕,从而降低喷管内表面的温度和烧蚀率,使高能推进剂在固体火箭发动机设计上得到应用,并有助于提高发动机的质量比。  相似文献   

8.
针对固体火箭发动机研制中应用广泛的碳布/高硅氧布酚醛缠绕制品,采用三方程热化学烧蚀反应理论和模型,对固体火箭发动机喷管扩散段进行了热化学烧蚀研究,并在某型号发动机上进行了验证计算。研究结果表明:该计算和试验结果基本吻合,具有一定的工程指导作用。  相似文献   

9.
日本宇宙开发事业团在研制“大和”小型航天飞机上,采用了一种碳/碳耐高温复合材料。该材料拟用在发动机喷管和航天飞机返回大气层时承受高温的壳体主翼底面等处。此种复合材料采用将碳纤维浸入碳粒子之中的方式,使烧蚀趋近于零,强度也相当  相似文献   

10.
引言近年来,欧洲动力公司(S.E.P.)对固体发动机喷管部件所用的碳材料,特别是碳/碳材料进行了研制。喷管材料具有耐烧蚀的特性,要经受3000℃以上的高温。由于喷管性能要求非常高,材料必须具有良好的耐烧蚀性能和较低的比重。考虑到在大多数喷管里,化学反应发生在还原介质中,我们认为所能使用的耐热材料中,碳是最可取的。在此文中,我们不评述构成喷管部件的碳结构材料,只简要地论述多晶石墨、热解石墨、碳增强酚醛复合材料和碳/碳材料,侧重介绍后两种,这是欧洲动力公司重点研制项目。  相似文献   

11.
Al2O3型碳/陶功能梯度材料烧蚀试验研究   总被引:1,自引:0,他引:1  
Al2O3型影陶功能梯度材料作为一种新型喷管热防护材料,其具有导热系数较低及良好的隔热性能。在氧乙炔烧蚀试验条件下该材料有很好的耐烧蚀性,但由于发动机内的工作环境更为恶劣,为了更好地反映材料在固体火箭发动机中的烧蚀情况,该研究工作采用了试验发动机进行烧蚀试验。结果表明,试验发动机中获得的烧蚀率数据高于氧乙炔试验数据。文中在试验基础上分析了Al2O3型影陶功能梯度材料在发动机工作条件下的烧蚀性能及导热性能。  相似文献   

12.
这是AIAA固体火箭委员会主席,锡奥科尔公司享茨维尔(Huntsvillc)分公司的生产处长Richard H.Wall所作的AIAA固体火箭委员会报告。 AIAA固体火箭委员会认为,1978年固体火箭技术上最重要的成就主要是: 1.飞行重量的可延伸喷管进行了全尺寸验证试验。因采用可延伸喷管而节省的空间能显著地提高系统的性能。例如,它能明显地增加先进洲际弹道导弹的射程。 2.用三向编织碳/碳材料作成的整体喷喉进行了全尺寸试验。这种三维设计提高了可靠性、降低了烧蚀率。  相似文献   

13.
重新设计的航天飞机固体火箭发动机在4月份完成了一次重要试验,表明发动机密封圈允许有加工裂纹。试验表明,现行喷管凸缘式密封外圈的基本设计方案是成功的,尽管NASA透露在1985年10月进行的航天飞机发射中一个助推器的凸缘式密封圈失效过。  相似文献   

14.
采用半经验法计算了固体火箭发动机喷管的效率,即用计算流场的方法确字喷管二维两相流损失和边界层损失,用SPP经验法预示了喷管的化学动力学损失,喷管烧蚀损失和喷管潜入损失。利用该方法对几个实际固体火箭发动机喷管效率进行了计算,计算结果与实际结果比较符合,精度偏差在1%之内。  相似文献   

15.
为航天飞机固体火箭发动机的研制制定设计条件是很必要的,这些设计条件具有三个新颖独特的特征: (1)固体推进系统首次用于载人宇宙飞行。 (2)航天飞机固体火箭发动机是当今最大的固体火箭发动机。 (3)固体推进系统首次设计成可回收修复并重复使用。这些新颖的特征规定了在航天飞机固体火箭发动机研制中,需要采用以往的成熟工艺及制造方法,保证可靠性是头等重要的。本文评述了航天飞机固体火箭发动机,从用于STS-1飞行的原设计到目前研制的新一代固体火箭发动机。这种新一代固体火箭发动机采用了石墨环氧纤维缠绕壳体。  相似文献   

16.
喉衬是固体火箭发动机非常关键的部件。自20世纪60年代起,碳/碳复合材料即在固体火箭发动机中得到广泛应用。喉衬材料不仅要承受热负荷、力学负荷和热冲击,还要经受化学侵蚀。喉衬的烧蚀规律,尤其是烧蚀速率及烧蚀机理,对于火箭的研制具有重要意义。采用理论分析、数值仿真及试验研究相结合的方法,具体分析了某固体火箭发动机碳/碳喉衬的烧蚀过程。理论方面,将烧蚀划分为热化学烧蚀及机械剥蚀,建立能量平衡方程。借助商业软件MSCMarc,建立简化的边界条件,采用精确的材料参数,获得了喉衬的烧蚀速率。结果表明,喉部前端烧蚀最为严重,平均烧蚀率约为0.068 mm/s。采用微米CT三维重构技术,获得了试验前后喉衬形貌,得到了喉衬各点烧蚀率。数值结果同试验结果最大误差约为20%。考虑到数值模拟忽略了点火阶段及拖尾段对喉衬的烧蚀作用较小,数值分析得到的烧蚀率应大于实际。  相似文献   

17.
关于无喷管固体火箭发动机,Price E.W.早在1954年就发表了理论探讨的文章。1960年由美国NASA资助,开始做7英寸发动机的实验研究。研究结果表明,无喷管发动机的性能是可以预计的,能达到相当高的水平。它结构简单,经济效益也很好。目前.无喷管发动机主要用于小型火箭或大发动机的点火发动机上。从1976年开始美国还将它用到组合式火箭——冲压发动机的预先研究工作中去[2]。美国几种无喷管火箭的性能列于表1、2和图1[3]。无喷管火箭发动机的研究,有理论价值,也有实用意义。  相似文献   

18.
恢复航天飞机飞行和改进航天飞机,是美国固体火箭行业1988年优先考虑的一件大事。为此,莫顿锡奥科尔公司进行了缩比发动机,短长度发动机、全尺寸发动机等的点火试验,并在3月和7月向 NASA 的肯尼迪航天中心各交付了一套用于飞行的固体火箭发动机。并进行了两发研制发动机、两发鉴定发动机和一发生产检验发动机的全尺寸点火试验。在鉴定发动机试验中,使发动机承受了侧向载荷。试验证明新接头的位移小于旧接头,在侧向载荷作用下没有开启。生产检验发动机的试验验证了现场接头和喷管——壳体接头对主要人为缺陷的敏感性。  相似文献   

19.
1991年,美国的固体火箭技术在继续发展,并为各类发射的成功作出了贡献。4月份,侏儒导弹成功地进行了第二次飞行试验,证明一二三级固体发动机都工作正常。这枚试验导弹的第二级发动机使用的是增强碳—酚醛喷管,可以承受比第一次飞行试验时更大的载荷。大力神Ⅳ在1991年首次进行了东西两个发射场的发射。在两次航天飞机的飞行中使用了惯性顶级奥巴斯21和奥巴  相似文献   

20.
本文介绍了航天飞机用的助推固体火箭发动机(SRM)。其类型分为三种:当前执行任务的标准SRM,空间飞行运输8号用的高性能SRM;以及计划在1985年飞行用的纤维缠绕壳体SRM。航天飞机的SRM是获得飞行状态中最大的固体推进剂发动机,其直径为146英寸,长度为125英尺,装有1111000磅固体推进剂,最大推力(真空条件下)为3115000磅力。在首次飞行前成功地进行了7次地面试车,随后的三次飞行试验满足了发动机的全部技术指标。计划提高航天飞机的性能,从东海岸发射的有效载荷达到65000磅,在西海岸发射时(极轨道)达到32000磅。航天飞机性能提高是由于:1.采用高性能的SRM使航天飞机的有效载荷增加3000磅。2.SRM使用纤维缠绕壳体结构使航天飞机的有效载荷增加6000磅。前者靠改变SRM的推力——时间曲线和提高喷管的膨胀比来实现;后者靠减少壳体的消极重量来实现。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号