首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
李信能  陈鼎昌 《航空学报》1990,11(10):455-462
 由微机控制的新型钻头刃磨机具有六根受计算机控制的运动轴。根据给定的钻头几何参数,利用微机计算出相应的刃磨参数,通过控制软件设计,可以刃磨多种钻型且具有较高的几何精度和重复精度,经刃磨试验表明该机床可以广泛用于制造领域内的钻头刃磨。  相似文献   

2.
李信能  陈鼎昌 《航空学报》1994,15(11):1403-1407
提出一种六自由度机械手的运动合成方法应用于钻头的刃磨,该方法利用运动的合成形成了刃磨钻头后刀面所需的刃磨运动,从而使得刃磨的调整变得十分方便。刃磨参数可以根据钻尖几何参数对机械手运动方程进行求解得到,刃磨出钻尖的测量结果与理论值基本一致。  相似文献   

3.
本文建立了群钻的数学模型,开发了钻头的计算机辅助设计系统——Drill CAD,以用于群钻的几何设计。利用该系统可以分析、计算并检验群钻的设计和刃磨参数,分析群钻几何参数对钻型几何形状的影响,并在屏幕上直接进行群钻的三维交互设计。此外,系统还能对钻头横截面几何形状、群钻的切削角度、群钻刃磨模型等进行分析和计算。  相似文献   

4.
绕速度矢量旋转运动风洞试验是研究战斗机尾旋和大迎角复杂机动特性的一种重要手段,其中模型支撑是关键。创新性地设计了基于六自由度绳系并联支撑的旋转运动方式。提出定旋转角速度和定气流角2种旋转运动设计方法,推导得到旋转运动参数与模型位姿之间的关系式,并给出两者的关联;结合支撑系统动力学模型,设计绳长为控制变量的计算力矩控制律。通过ADMAS软件仿真和原理样机试验验证,结果表明所提设计方法可以实现飞机模型绕速度矢量变气流角定速率、定气流角变速率等复杂变参数旋转运动,且定气流角方法既能满足三自由度定耦合比关系,还能准确地模拟战斗机正飞/倒飞尾旋运动,这将为深入研究尾旋和大迎角机动特性提供技术支持。  相似文献   

5.
本文分析了分裂钻尖(Split Point)的数学模型及其刃磨方法,并在数控钻头刃磨机上进行了刃磨试验。刃磨出的钻尖具有较好的几何精度和重复精度,从而解决了分裂钻头难以刃磨的困难。  相似文献   

6.
基于参考点处瞬时接触椭圆大体决定接触区长度的方法,提出一种切齿调整计算方法.根据奥利康刀倾半展成法(Spirac)切齿原理,建立摆线齿准双曲面齿轮的数学模型,得到了大轮齿面参考点处瞬时接触椭圆参数;在满足参考点位置、压力角和螺旋角的基础上,将刀倾角也作为迭代变量,并将接触区长度系数等于预置值作为新增的迭代条件,迭代求解切齿调整参数.最后以一对摆线齿准双曲面齿轮副为例,对比该方法与Spirac切齿调整计算结果,验证了该方法的准确性,并对不同预置接触区长度系数得到的齿面进行齿面接触分析.结果表明,该方法解决了反复调整刀倾角的问题,并通过精确控制大轮齿面接触区长度系数等于设计值,实现了对大轮齿面接触区长度的预控.  相似文献   

7.
高钴高速钢钻头由美国Guhrin召公司最新推出含钻量大于8%的高速As钻头系列,为用户提供了高质高可靠性孔加工刀具,其中将GT80-IC钻头设计成130”钻尖角和15”大正前角,钻头中部加工出螺旋槽、冷却液孔等新结构形式。这种结构不仅增加了钻头强度,...  相似文献   

8.
本文介绍了采用接触轨迹原理结合自动编程刃磨指状齿轮铣刀的新方法。该方法投资小,使用简便,可以代替手工和靠模的方法刃磨指状齿轮铣刀。  相似文献   

9.
跨超声速风洞大开角段设计技术研究   总被引:2,自引:0,他引:2  
跨超声速风洞大开角段设计技术研究对于提高大开角段的安全性能与改进稳定段入口气流质量有着重大意义.由于影响大开角段性能的参数较多,完全通过试验方法进行设计的成本过高.本文通过数值模拟方法,结合适当的边界条件,对不同参数的大开角段进行了模拟,从数值模拟的结果可以看到,孔板开孔率和扩开角对大开角段性能有显著影响,通过比较得出了较为合理的参数匹配.这表明本文所用的方法用于大开角段气动设计是可行的,这为数值模拟方法应用于风洞部段气动设计创造了一定的条件.  相似文献   

10.
通用钻头经过刃磨改进几何角度后,钻削铝镁合金零件,增加了切削性能,保证产品质量,并提高生产效率,以下是钻头的几何角度,以供参考。一、前角:外圆处为8°±3°,越近中心逐渐减小,接近中心处为-13°+3°,如果不把前角磨小当钻头占透时,发生零件往上跳动造成孔椭圆,甚至报废,把不住零件造成机床事  相似文献   

11.
采用数值试验方法研究涡轮叶栅结构参数对叶片表面马赫数分布规律的影响,通过有目的地调整某些结构参数,可以快速地获得具有指定马赫分布规律的叶栅设计。  相似文献   

12.
连续式跨声速风洞大开角段整流装置设计数值模拟   总被引:2,自引:0,他引:2  
采用阻尼网对大开角段内的气流分离进行控制,并合理设置其参数,是工程上有效的方法之一。为验证阻尼网工程设计方法的可靠性,以0.6m连续式跨声速风洞为背景,通过数值模拟,对工程设计方法的初步结果进行了验证,并在此基础上结合大开角段布置环境对阻尼网参数进行了优化。由计算结果知,采用方案3-4(两层阻尼网损失系数分别为1.6和1.0)时,大开角段出口截面的速度均方根偏差值(RMS)为14.5%;考虑布置环境影响,调整两层阻尼网损失系数至0.8和1.0时,RMS值为16.2%。研究结果表明,阻尼网工程设计方法结合数值模拟可以有效地应用于大开角段整流装置的设计,达到了抑制大开角段内气流分离,降低压力损失,提高出口速度均匀性的设计目标。  相似文献   

13.
三种钻头钻削CFRP轴向力的时变曲线及预测   总被引:1,自引:1,他引:0  
采用二刃、三刃双锋角钻头和圆弧形钻头钻削CFRP单向板,研究钻削过程中轴向力时变曲线的特征,并探索用预测轴向力时变曲线上的关键拐点的方法来构建预测轴向力时变曲线模型。结果表明:三刃双锋角钻头的轴向力时变曲线最为稳定,钻削过程最为稳定;轴向力最大的是三刃双锋角钻头,其次是圆弧形钻头,最小的是二刃双锋角钻头,说明二刃双锋角钻头适合钻削CFRP;用预测轴向力时变曲线上的关键拐点的方法构建的轴向力时变曲线可以很好地预测双锋角钻头轴向力时变曲线。  相似文献   

14.
针对碳纤维复合材料钻孔时易产生撕裂、毛刺等缺陷的特点,采用双锋角钻头为研究对象,从横刃、第一主切削刃和第二主切削刃对孔入、出口缺陷的影响和加工参数对撕裂因子的影响规律等方面分析双锋角钻头钻孔特点,并与普通麻花钻进行对比。结果表明:在相同的加工参数下,双锋角钻头双主切削刃加工特点降低了入、出口钻削轴向力,有效抑制了入、出口撕裂、毛刺等缺陷产生,更适合于钻削碳纤维复合材料。主轴转速增大有利于减小撕裂因子,随着进给速度的增加撕裂因子呈增大的趋势。采用多元线性回归方法建立了试验两种钻头钻孔入、出口的撕裂因子与加工参数之间的回归预测模型。  相似文献   

15.
大涵道比发动机多级低压涡轮气动设计   总被引:2,自引:0,他引:2       下载免费PDF全文
陈云  王雷  王刚 《航空发动机》2013,39(4):51-55
基于大涵道比航空发动机多级低压涡轮设计研究,分析了大涵道比发动机多级低压涡轮气动设计特点和主要设计参数的设计选取原则以及发展趋势,研究了过渡流道设计参数的选取标准、过渡流道优化设计方法以及对多级低压涡轮子午流道设计与功率分配方法,综合分析了多级低压涡轮功率分配需要考虑的各项因素,并探讨了高升力涡轮叶型设计方法。研究表明:过渡流道方案设计可以采用长高比及当量扩张角作为初步选取标准;多级低压涡轮功率分配要综合考虑不同工况性能及气动设计参数;完成设计的大转折角后加载叶型能够有效地控制涡轮叶栅内的流动损失。  相似文献   

16.
三牙轮钻头工艺图自动生成系统   总被引:2,自引:0,他引:2  
介绍了三牙轮钻头工艺图自动生成系统的结构和功能,论述了工艺图信息模型和工艺图自动生成的的工作原理,提出了综合参数化特征组合和样板图尺寸置换2种方法自动生成工艺图的方法。  相似文献   

17.
给出了一种利用非线性观测器方法能够同时估计出来所需要的迎角和侧滑角参数,研究了非线性观测器原理及其反馈参数优化设计方法,得到了所需要的非线性观测器,最后通过仿真验证表明该方法具有很高的精度且易于实现。  相似文献   

18.
以VL205-CNC机床为例讨论了铣刀数控刃磨过程的计算原理,给出了螺旋铣刀后刀面刃磨的计算方法,最后叙述了刀具刃磨数控程序实现的一般过程。  相似文献   

19.
由北京航空航天大学和北京航空工艺研究所共同研制的CNC—6DG型六座标数控钻头刃磨机样机,于6月23日~24日在部飞机机械连接研究系统组织召开评审、验收会上通过验收。 与会代表认为:这台数控钻头刃磨机设计方案及原理都是正确的。从自动刃磨出的三尖两刃式的钻尖,在钻制凯拉与碳纤维混杂的复合材料中,制孔质量取得明显效果,配上不同程序,可以磨出各种钻尖形状。会议认为,这台设备的研制成功不仅使  相似文献   

20.
以玻璃纤维增强树脂基复合材料及其复合构件台阶孔为研究对象,通过性能分析、工装和刀具设计、工艺参数优化等研究加工中各因素对台阶孔的影响。实验结果表明,采用镶合金复合钻头25°(螺旋角p)/15°(后角α),使用专用的工艺装置给钻削区材料施加预压应力,钻头转速为250、315 r/min、进给量为0.06、0.1mm/r时,孔的加工质量达到最优。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号