首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A general procedure for analyzing ground clutter effects in airborne pulse Doppler radars is described. The quantity computed is the expected clutter power at the output of any specified range gate/ Doppler filter processing cell. The procedure has been computerized and is quite general with respect to antenna gain pattern, clutter cross section variation, PRF, pulse and range gate shapes, and the various receiver processing functions. It is applicable only to distributed ground clutter and linear processing, and excludes the dynamic effects of continuous antenna scanning. To exemplify the use of the procedure, two studies conducted for a postulated high PRF radar are described, and the results are presented.  相似文献   

2.
Medium PRF set selection using evolutionary algorithms   总被引:2,自引:0,他引:2  
This paper presents a new and novel method of selecting multiple pulse repetition frequency (PRF) sets for use in medium PRF pulsed-Doppler radars. Evolutionary algorithms are used to minimise the blind areas in the range/Doppler space. The evolutionary algorithm allows optimal solutions to be generated quickly, far faster than with exhaustive searches, and is fully automatic, unlike existing techniques. The evolved solutions compare very favorably against the results of both an exhaustive search and existing published PRF set selection methods. This evolutionary approach to generation of PRF sets is a major advance in medium PRF radar design.  相似文献   

3.
Pulse-burst radar attempts to capitalize on the advantages of both low and high PRF radar while minimizing their disadvantages. Optimization procedures are applied to the choice of transmitter signal and receiver weighting. The results are compared to the use of Tschebyscheff transmitter weighting with an optimized receiver. The effects of various design and operational parameters are indicated. The performance of pulse-burst radar is qualitatively compared to that of conventional low and high PRF Doppler radar. It is concluded that pulse-burst radar offers the possibility of achieving a solution to the MTI problem under operational conditions where conventional Doppler radars fail.  相似文献   

4.
In low pulse-repetition frequency (PRF) pulse radars, signal-to-noise ratio (SNR) is usually calculated on a per pulse basis and this value is then multiplied by the number of pulses integrated to obtain the SNR for a given duration of target illumination. In high PRF pulse Doppler radars, SNR is usually calculated by using the centerline power of the transmitted signal spectrum as the target return power because the centerline is kept in the receiver and returns of the PRF lines are notched out [1]. We show here that both methods of SNR calculations are entirely equivalent for matched transmit-receive radar systems.  相似文献   

5.
Recent developments in airborne Doppler and ground mapping navigation radars and ground and satellite based radio systems are described. Simultaneous lobing and slope tracking techniques can remove the well-known Doppler sea bias error in fast and slowly moving vehicles. Doppler velocity information can be extracted from coherent forward-looking mapping radars, and high position fixing accuracy can be achieved by synthetic aperture radars. In radio navigation systems, such as Loran, Omega, and satellite systems, direct-ranging and differential techniques greatly reduce the geometric dilution and propagation effects which have plagued conventional radio navigation systems. The advantages gained by mixing of the data from these and other navigation sensors in a digital multisensor system are discussed and approaches for processing these data are suggested.  相似文献   

6.
In radars that achieve a high subclutter visibility by coherent processing over several pulses, a serious problem appears in the form of blind Dopplers, or ?speeds,? at which target detection is impossible. Of the possible methods of eliminating these blind speeds, the most basic one that is employed when the performance requirements are high involves the use of several PRF's. These PRF's are chosen so that coverage is obtained at any Doppler with at least one PRF. The problem faced by the radar designer is to select the set of PRF's and the pulse numbers for each PRF so that the search frame time is minimized. This paper evolves a systematic method for the design of the blind-speed elimination scheme. A formalized approach is offered that shows the possible combinations of wavelength, PRF, and pulse number and the tradeoffs involved, without introducing the confusion ordinarily associated with multiparameter choices.  相似文献   

7.
The paper proposes a way to increase the energy within a coherent processing interval (CPI) using more pulses instead of longer pulses. Long coded pulses result in masking targets at close range and poor Doppler tolerance. Increasing the number of pulses implies high pulse repetition frequency (PRF), which suffers from range ambiguity and target folding. These drawbacks of a high PRF can be mitigated by inter-pulse coding. The approach suggested here should be attractive for close and mid range applications of radar, ground penetrating radar, ultrasound imaging, and more.  相似文献   

8.
Comparison between monostatic and bistatic antenna configurationsfor STAP   总被引:3,自引:0,他引:3  
The unique characteristics of bistatic radar operation on the performance of airborne/spaceborne moving target indicator (MTI) radars that use space-time adaptive processing (STAP) are discussed. It has been shown that monostatic STAP radar has the following properties. 1) For a horizontal flight path and a planar Earth the curves of constant clutter Doppler (isodops) are hyperbolas. 2) For a sidelooking antenna geometry the clutter Doppler is range independent. 3) Clutter trajectories in the cosφ-F plane (F=normalized Doppler) are in general ellipses (or straight lines for a sidelooking array). We demonstrate that these well-known properties are distorted by the displacement between transmitter and receiver in a bistatic configuration. It is shown that even for the sidelooking array geometry the clutter Doppler is range-dependent which requires adaptation of the STAP processor for each individual range gate. Conclusions for the design of STAP processors are drawn  相似文献   

9.
Performance comparison of PRF schedules for medium PRF radar   总被引:1,自引:0,他引:1  
Previous work has shown how evolutionary algorithms (EAs) are an effective tool in optimising the selection of pulse repetition frequency (PRF) values of medium PRF schedules in an airborne fire control radar (FCR) application requiring target data in three PRFs. The optimisation is driven by the requirement to minimise range/Doppler blindness whilst maintaining full decodability. In this paper we detail work in which the optimisation process is applied to design novel short medium PRF schedules requiring target data in just two PRFs. The paper reports on the testing of a variety of near-optimum schedules to compare their blindness, decoding, and ghosting performances. The results show that in many situations, the 2 of N schedules are a practical alternative to conventional 3 of N processing.  相似文献   

10.
A space-based radar system concept is described that can provide continuous world-wide, all-weather, day-night observation and tracking of ships, aircraft, vehicles and ground facilities of interest. The system employs a constellation of radar satellites in low-earth orbit to provide continuous world-wide target access. The radars employ reflector antennas, TWT transmitters and high frequency (e.g., X band) to achieve long range with relatively low weight, complexity and cost. The radars operate in moving-target-detection (MTD) and synthetic-aperture-radar (SAR) spotlight imaging modes to observe moving and fixed targets, respectively. The system could support a wide range of military, intelligence, law-enforcement and civilian missions  相似文献   

11.
Moving target detection via airborne HRR phased array radar   总被引:1,自引:0,他引:1  
We study moving target detection in the presence of temporally and spatially correlated ground clutter for airborne high range resolution (HRR) phased array radar. We divide the HRR range profiles into large range segments to avoid the range migration problems that occur in the HRR radar data. Since each range segment contains a sequence of HRR range bins, no information is lost due to the division and hence no loss of resolution occurs. We show how to use a vector autoregressive (VAR) filtering technique to suppress the ground clutter. Then a moving target detector based on a generalized likelihood ratio test (GLRT) detection strategy is derived. The detection threshold is determined according to the desired false alarm rate, which is made possible via an asymptotic statistical analysis. After the target Doppler frequency and spatial signature vectors are estimated from the VAR-filtered data as if a target were present, a simple detection variable is computed and compared with the detection threshold to render a decision on the presence of a target. Numerical results are provided to demonstrate the performance of the proposed moving target detection algorithm  相似文献   

12.
The aim of ground surveillance is the large scale, continuous and near real time determination of a dynamical ground picture. This task comprises detection and tracking of moving single targets and convoys, mobile weapon systems, and military equipment. The sensors of choice are airborne Ground Moving Target Indicator (GMTI) radar and synthetic aperture radar (SAR). As ground target tracking often suffers from dense target situations, high clutter, and low visibility, the integration and fusion of external background information is essential for providing precise and continuous tracks. We present Multi Hypotheses techniques for tracking several targets in complex ground situations with clutter. Methods to incorporate topographic information, in particular digital road maps, are described and demonstrated.  相似文献   

13.
Design and applications of airborne radars in the VHF/UHF band   总被引:1,自引:0,他引:1  
The simultaneous need for ground penetration and high resolution dictates the use of frequencies less than 500 MHz for imaging ground penetrating radar (GPR) designs. It is possible to build such systems with good performance and yet not interfere with ground installations operating in the same bands. The total number of airborne GPR systems needed to saturate the market is small, (possibly less than ten), and so the buildup of noise in this spectral region occupied by these radars will be negligible. This is fortunate, since there is a clear need for such radars in such areas as humanitarian demining and unexploded ordnance (UXO) mapping. Some formal set of guidelines is needed beyond that given in Part 15 of the FCC regulations, which both recognizes the need for airborne UWB radar operations, and still protects licensed users in the band  相似文献   

14.
基于遗传算法的多部测速雷达布站优化研究   总被引:1,自引:0,他引:1  
通过部署于不同地点的多部无源多普勒测速雷达,可以对有辐射信号源的机动飞行目标进行跟踪测量,并且可以对目标位置和速度信息进行最佳估计。本文探讨了遗传算法在测速雷达布站优化中的使用方法,分析了误差传播矩阵,建立了简易目标函数,利用遗传算法对信标体制下的多普勒测速单站的布站几何进行了优化。  相似文献   

15.
The ELDORA/ASTRAIA airborne Doppler weather radar was recently placed in service by US and French atmospheric sciences research laboratories. The ELDORA/ASTRAIA radar is designed to provide high resolution measurements of the air motion and rainfall characteristics of atmospheric storms which are too large, remote or fast-moving to be adequately observed by ground-based radars. This paper discusses the measurement requirements and the design goals of the radar and presents sample measurements from a recent weather research field program  相似文献   

16.
The state of Georgia has experienced a number of tornados that occur without warning, and, in several cases have caused fatalities. Researchers at the Severe Storms Research Center (SSRC) of the Georgia Tech Research Institute (GTRI), Georgia Institute of Technology are attempting to detect tornado formation within severe thunderstorms occurring in the vicinity of Atlanta, Georgia, using non-radar sensors that may provide early tornado warning and provide cueing to existing National Weather Service (NWS) radars. The goal of these studies is to increase the warning time of tornado formation within the parent thunderstorm. GTRI researchers use real-time S-band Doppler weather radar data from three National Weather Service WSR-88D NEXRAD radars to complement the development of the non-radar tornado sensors. Three NWS Doppler radars provide severe weather surveillance coverage of the north Georgia area to determine if a thunderstorm contains the Doppler signature that indicates tornado formation. The radar data, displayed on a work station developed and optimized for tornado detection by the National Severe Storms Laboratory (NSSL), serves as ground truth data for the non-radar sensor development. GTRI can display cloud to ground (CG) lightning strikes, a capability provided by overlaying data from a national monitoring network onto the radar reflectivity map. GTRI also uses a local lightning direction finder (DF) system that supplies azimuth and range to the lightning strike. This paper discusses the early lightning channel research and the passive parasitic radar system being operated by the SSRC.  相似文献   

17.
The following topics are discussed in the context of the development of an airborne moving target radar for long range surveillance: US Navy long range shipborne radar; Cadillac I airborne early warning (AEW) radar; Cadillac II airborne early warning (AEW) radar; airborne moving target indicating (AMTI) radar; related post-war radar activities; and the invention of the displaced center antenna. Among the topics studied is the use of a monopulse antenna in an MTI radar to remove the degradation of the MTI caused by rapid scanning of the antenna. A method of using a monopulse antenna for motion compensation in airborne MTI is discussed.<>  相似文献   

18.
Space-time adaptive processing (STAP) is an effective method adopted in airborne radar to suppress ground clutter. Multiple-input multiple-output (MIMO) radar is a new radar concept and has superiority over conventional radars. Recent proposals have been applying STAP in MIMO configuration to the improvement of the performance of conventional radars. As waveforms transmitted by MIMO radar can be correlated or uncorrelated with each other, this article develops a unified signal model incorporating waveforms for STAP in MIMO radar with waveform diversity. Through this framework, STAP performances are expressed as functions of the waveform covariance matrix (WCM). Then, effects of waveforms can be investigated. The sensitivity, i.e., the maximum range detectable, is shown to be proportional to the maximum eigenvalue of WCM. Both theoretical studies and numerical simulation examples illustrate the waveform effects on the sensitivity of MIMO STAP radar, based on which we can make better trade-off between waveforms to achieve optimal system performance.  相似文献   

19.
Different types of distributed radar systems and data fusion centers are increasingly used by surface-based air defense systems. Besides the well-established airborne threats, new platforms for air surveillance and attacking devices have appeared and recognized air picture (RAP) production needs to be revised and modified following the events of September 11, 2001. From a military operational and logistic support point of view, it is well-known that not only the long range radars currently in operation, but also the recently procured radars, degrade in performance rapidly and their maintenance costs are high. Using the possibilities offered by emerging technical developments, the problem is to upgrade sensors and existing infrastructure in a way that exploits the information gathered optimally. It is the opinion of this author that one of the most promising approaches to emphasis net-centricity is the use of radar-triangle netcentric structures augmented by netted VHF radars to solve these tasks in a cost-effective manner. This work introduces an analysis of a solution that fully integrates newly required capabilities into the current long range radar net and infrastructure, keeping research and development (R&D) and maintenance at a low cost.  相似文献   

20.
The US Army ERDEC is developing advanced aerosol systems to combat threat surveillance, fire control, and seeker systems operating in the visible, infrared, and millimeter wave portions of the electromagnetic spectrum. One such system is the M56 multispectral smoke generator, which presently operates in the visible and infrared portions of the spectrum; a millimeter wave (MMW) Module is in development to extend the M56 spectral range. This paper documents preliminary results of a field demonstration test of the M56 MMW Module. An MMW instrumentation radar was modified to simulate the scan pattern and radar parameters of a tactical battlefield surveillance radar system. A test grid was populated with both stationary and moving tactical targets, and the radar scanned the grid to simulate a surveillance radar in operation. Once a realistic tactical engagement scenario was developed, MMW aerosols were deployed to demonstrate the impact such aerosols could have on radar detection and classification performance  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号