首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Space-time autoregressive filtering for matched subspace STAP   总被引:3,自引:0,他引:3  
Practical space-time adaptive processing (STAP) implementations rely on reduced-dimension processing, using techniques such as principle components or partially adaptive filters. The dimension reduction not only decreases the computational load, it also reduces the sample support required for estimating the interference statistics. This results because the clutter covariance is implicitly assumed to possess a certain (nonparametric) structure. We demonstrate how imposing a parametric structure on the clutter and jamming can lead to a further reduction in both computation and secondary sample support. Our approach, referred to as space-time autoregressive (STAR) filtering, is applied in two steps: first, a structured subspace orthogonal to that in which the clutter and interference reside is found, and second, a detector matched to this subspace is used to determine whether or not a target is present. Using a realistic simulated data set for circular array STAP, we demonstrate that this approach achieves significantly lower signal-to-interference plus noise ratio (SINR) loss with a computational load that is less than that required by other popular approaches. The STAR algorithm also yields excellent performance with very small secondary sample support, a feature that is particularly attractive for applications involving nonstationary clutter.  相似文献   

2.
Multistage partially adaptive STAP CFAR detection algorithm   总被引:1,自引:0,他引:1  
A new method of partially adaptive constant false-alarm rate (CFAR) detection is introduced. The processor implements a novel sequence of orthogonal subspace projections to decompose the Wiener solution in terms of the cross-correlation observed at each stage. The performance is evaluated using the general framework of space-time adaptive processing (STAP) for the cases of both known and unknown covariance. It is demonstrated that this new approach to partially adaptive STAP outperforms the more complex eigen-analysis approaches using both simulated DARPA Mountain Top data and true pulse-Doppler radar data collected by the MCARM radar  相似文献   

3.
An adaptive threshold detector to test for the presence of a weak signal in additive non-Gaussian noise of unknown level is discussed. The detector consists of a locally optimum detector, a noise level estimator, and a decision device. The detection threshold is made adaptive according to the information provided by the noise level estimator in order to keep a fixed false-alarm probability. Asymptotic performance characteristics are obtained indicating relationships among the basic system parameters such as the reference noise sample size and the underlying noise statistics. It is shown that, as the reference noise sample size is made sufficiently large, the adaptive threshold detector attains the performance of a corresponding locally optimum detector for detecting the weak signal were the noise level known.  相似文献   

4.
The detection of signals in an unknown, typically non-Gaussian noise environment, while attempting to maintain a constant false-alarm rate, is a common problem in radar and sonar. The raw receiver data is commonly processed initially by a bank of frequency filters. The further processing of the outputs from the filter bank by a two-sample Mann-Whitney detector is considered. When the noise statistics in all filters are identical, the Mann-Whitney detector is distribution free, i. e., the false-alarm probability may be prescribed in advance regardless of the precise form of the noise statistics. The primary purpose of this paper is to demonstrate the potential advantage of nonparametric detectors over conventional detectors. The signal detection performance of the Mann-Whitney detector is compared to that of an ordinary linear envelope detector plus integrator in the presence of Gaussian and several hypothetical forms of non-Gaussian noise. This comparison is made for both uniform and nonuniform distributions of noise power across the filter bank. Besides providing a much more constant false-alarm rate than the conventional detector, the Mann-Whitney detector's signal detection performance is found also to be much less sensitive to the form of the noise statistics. In one case, its detection sensitivity is found to be 11 dB better than that of the conventional detector. Even when the noise power density is made moderately nonuniform across the filter bank, the detection performance of the Mann-Whitney detector is found not to be significantly affected.  相似文献   

5.
能量和协方差检验的联合频谱感知算法研究   总被引:1,自引:0,他引:1  
张怡  席博  黄印  陈利民 《航空计算技术》2011,41(2):113-116,124
快速准确的频谱感知是认知无线电系统有效通信的前提。现有的能量检测算法易受噪声波动影响,为提高频谱感知的性能,采用了联合频谱感知算法。方法利用双门限的能量检测法进行粗检,并使用协方差检测算法对中间混淆区域进行二次判决。在噪声不确定的情况下,对联合频谱感知算法性能进行了仿真分析。仿真结果表明,在噪声波动较大时,算法有效地提高频谱检测的性能,而且计算复杂度得到降低,并优于能量检测法和协方差检测法。  相似文献   

6.
Noise subspace techniques in non-gaussian noise using cumulants   总被引:1,自引:0,他引:1  
We consider noise subspace methods for narrowband direction-of-arrival or harmonic retrieval in colored linear non-gaussian noise of unknown covariance and unknown distribution. The non-gaussian noise covariance is estimated via higher order cumulants and combined with correlation information to solve a generalized eigenvalue problem. The estimated eigenvectors are used in a variety of noise subspace methods such as multiple signal classification (MUSIC), MVDR and eigenvector. The noise covariance estimates are obtained in the presence of the harmonic signals, obviating the need for noise-only training records. The covariance estimates may be obtained nonparametrically via cumulant projections, or parametrically using autoregressive moving average (ARMA) models. An information theoretic criterion using higher order cumulants is presented which may be used to simultaneously estimate the ARMA model order and parameters. Third- and fourth-order cumulants are employed for asymmetric and symmetric probability density function (pdf) cases, respectively. Simulation results show considerable improvement over conventional methods with no prewhitening. The effects of prewhitening are particularly evident in the dominant eigenvalues, as revealed by singular value decomposition (SVD) analysis  相似文献   

7.
提出了一种基于迭代QR分解的信源到达角(DOA)估计技术.DOA估计的子空间方法主要是通过估计信号协方差矩阵的信号子空间或者噪声子空间来求出信号的DOA参数.估计这些子空间通常需要大量的计算,采用ASIC实现时其成本会非常昂贵.本文采用迭代QR分解方法进行子空间分解,可以利用较少量的计算资源完成处理任务.仿真实验结果达到0.23毫弧度,说明该算法比较可靠有效.  相似文献   

8.
EMD-EKF方法研究   总被引:1,自引:0,他引:1       下载免费PDF全文
应用扩展卡尔曼滤波(EKF)时需要估计量测噪声的统计特性。文中针对观测噪声统计特性描述不准确导致的EKF性能下降的问题,利用经验模态分解方法(Empirical Mode Decomposition,EMD)可以分离信号和噪声的特性,提出了一种在未知量测噪声条件下的EKF方法。该方法可以跟踪观测噪声的变化,即实现了对量测噪声的估计,从而解决了在未知量测噪声的情况下的EKF问题。仿真结果表明可运用于无源定位中。  相似文献   

9.
Nonparametric Radar Extraction Using a Generalized Sign Test   总被引:3,自引:0,他引:3  
A nonparametric procedure used in a constant false alarm rate (CFAR) radar extractor for detecting targets in a background of noise with unknown statistical properties is described. The detector is based on a generalization of the well-known two-sample sign test and thus requires a set of reference noise observations in addition to the set of observations being tested for signal presence. The detection performance against Gaussian noise is determined for a finite number of observations and asymptotically, for both nonfluctuating and pulse-to-pulse Rayleigh fluctuating target statistics. It is noted that the performance loss, as compared to the optimum parametric detector, depends critically on the number of reference noise observations available when the number of hits per target is not large. In the same case a much larger loss is also found for a pulse-to-pulse fluctuating target even though the asymptotic loss is the same as for a nonfluctuating target. A comparison is finally made with a detector based on the Mann-Whitney test, which usually is considered to be one of the better nonparametric procedures for the two-sample case.  相似文献   

10.
CFAR detection of distributed targets in non-Gaussian disturbance   总被引:1,自引:0,他引:1  
The subject of detection of spatially distributed targets in non-Gaussian noise with unknown statistics is addressed. At the design stage, in order to cope with the a priori uncertainty, we model noise returns as Gaussian vectors with the same structure of the covariance matrix, but possibly different power levels (heterogeneous environment). We also assume that a set of secondary data, free of signal components, is available to estimate the correlation properties of the disturbance The proposed detector assumes no a priori knowledge about the spatial distribution of the target scatterers and ensures the constant false alarm rate (CFAR) property with respect to both the structure of the covariance matrix and the power levels. Finally, the performance assessment, conducted modeling the disturbance as a spherically invariant random process (SIRP), confirms its validity to operate in real radar scenarios  相似文献   

11.
An adaptive detection algorithm with a sensibility parameter for rejecting unwanted signals is presented. This algorithm is a simple modification of the generalized likelihood ratio (GLR) detector (or test) for detecting a signal in zero mean Gaussian noise with unknown correlation matrix. Specifically, the adaptive detection algorithm is obtained by introducing an arbitrary positive scalar, which is called the sensitivity parameter, into the GLR detector as a multiplier of an already existing quadratic term. The GLR detector then becomes a special case of this detector for the unity sensitivity parameter. It is shown that the sensitivity parameter controls the degree to which unwanted signals are rejected. From numerical examples, it is demonstrated how the sensitivity parameter can be chosen such that unwanted signals, can be rejected while maintaining acceptable detection loss for slightly mismatched signals. Further insight into previous work on adaptive detection is also given  相似文献   

12.
We derive the optimum radar receiver to detect fluctuating and non-fluctuating targets against a disturbance which is modeled as a mixture of coherent K-distributed and Gaussian-distributed clutter. In addition, thermal noise, which is always present in the radar receiver, is considered. We discuss the implementation of the optimum coherent detector, which derives from the likelihood ratio test under the assumption of perfectly known disturbance statistics, and evaluate its performance via a numerical procedure, when possible, and via Monte Carlo simulation otherwise. Moreover, we compare the performance of the optimum detector with those of two detectors which are optimum for totally Gaussian and totally K-distributed clutter respectively, when they are fed with such a mixed disturbance. We conclude that, though the optimum detector has a larger computational cost, it provides sensibly better detection performance than the mismatched detectors in a number of operational situations. Thus, there is a need to derive suboptimum target detectors against the mixture of disturbances which trade-off the detection performance and the implementation complexity  相似文献   

13.
We study the design of constant false-alarm rate (CFAR) tests for detecting a rank-one signal in the presence of background Gaussian noise with unknown spatial covariance. We look at invariant tests, i.e., those tests whose performance is independent of the nuisance parameters, like the background noise covariance. Such tests are shown to have the desirable CFAR property. We characterize the class of all such tests by showing that any invariant decision statistic can be written as a function of two basic statistics which are in fact the adaptive matched filter (AMF) statistic and Kelly's generalized likelihood ratio statistic. Further, we establish an optimum test in the limit of low signal-to-noise ratio (SNR), the locally most powerful invariant (LMPI) test. We also derive the bound for the probability of detection of any invariant detector, at a fixed false-alarm rate, and compare the LMPI and the published detectors (Kelly and AMF) to it  相似文献   

14.
文章研究了背景为子空间干扰加高斯杂波的距离扩展目标方向检测问题。杂波是均值为零协方差矩阵未知但具有斜对称特性的高斯杂波,目标与干扰分别通过具备斜对称特性的目标子空间和干扰子空间描述。针对方向检测问题,利用上述斜对称性,根据广义似然比检验(Generalized Likeli-hood Ratio Test,GLRT)准则的一步与两步设计方法,设计了基于 GLRT的一步法与两步法的距离扩展目标方向检测器。通过理论推导证明了这 2种检测器相对于未知杂波协方差矩阵都具有恒虚警率。对比相同背景下已有检测器,特别是在辅助数据有限的场景下,文章提出的 2个检测器表现出了优越的检测性能。  相似文献   

15.
This paper presents a new approach to noise covariances estimation for a linear, time-invariant, stochastic system with constant but unknown bias states. The system is supposed to satisfy controllable/observable conditions without bias states. Based on a restructured data representation, the covariance of a new variable that consists of measurement vectors is expressed as a linear combination of unknown parameters. Noise covariances are then estimated by employing a recursive least-squares algorithm. The proposed method requires no a priori estimates of noise covariances, provides consistent estimates, and can also be applied when the relationship between bias states and other states is unknown. The method has been applied to strapdown inertial navigation system initial alignment. Simulation results indicate a satisfactory performance of the proposed method  相似文献   

16.
Matched subspace CFAR detection of hovering helicopters   总被引:4,自引:0,他引:4  
A constant false alarm rate (CFAR) strategy for detecting a Gaussian distributed random signal against correlated non-Gaussian clutter is developed. The proposed algorithm is based on Scharf's matched subspace detector (MSD) and has the CFAR property with respect to the clutter amplitude probability density function (apdf), provided that the clutter distribution belongs to the compound-Gaussian family and the clutter covariance matrix is known to within a scale factor. Analytical expressions of false alarm and detection probabilities are derived. An application to the problem of detecting hovering helicopters against vegetated ground clutter is reported  相似文献   

17.
Optimal and adaptive reduced-rank STAP   总被引:1,自引:0,他引:1  
This paper is concerned with issues and techniques associated with the development of both optimal and adaptive (data dependent) reduced-rank signal processing architectures. Adaptive algorithms for 1D beamforming, 2D space-time adaptive processing (STAP), and 3D STAP for joint hot and cold clutter mitigation are surveyed. The following concepts are then introduced for the first time (other than workshop and conference records) and evaluated in a signal-dependent versus signal independent context: (1) the adaptive processing “region-of-convergence” as a function of sample support and rank, (2) a new variant of the cross-spectral metric (CSM) that retains dominant mode estimation in the direct-form processor (DFP) structure, and (3) the robustness of the proposed methods to the subspace “leakage” problem arising in many real-world applications. A comprehensive performance comparison is conducted both analytically and via Monte Carlo simulation which clearly demonstrates the superior theoretical compression performance of signal-dependent rank-reduction, its broader region-of-convergence, and its inherent robustness to subspace leakage  相似文献   

18.
Stap using knowledge-aided covariance estimation and the fracta algorithm   总被引:1,自引:0,他引:1  
In the airborne space-time adaptive processing (STAP) setting, a priori information via knowledge-aided covariance estimation (KACE) is employed in order to reduce the required sample support for application to heterogeneous clutter scenarios. The enhanced FRACTA (FRACTA.E) algorithm with KACE as well as Doppler-sensitive adaptive coherence estimation (DS-ACE) is applied to the KASSPER I & II data sets where it is shown via simulation that near-clairvoyant detection performance is maintained with as little as 1/3 of the normally required number of training data samples. The KASSPER I & II data sets are simulated high-fidelity heterogeneous clutter scenarios which possess several groups of dense targets. KACE provides a priori information about the clutter covariance matrix by exploiting approximately known operating parameters about the radar platform such as pulse repetition frequency (PRF), crab angle, and platform velocity. In addition, the DS-ACE detector is presented which provides greater robustness for low sample support by mitigating false alarms from undernulled clutter near the clutter ridge while maintaining sufficient sensitivity away from the clutter ridge to enable effective target detection performance  相似文献   

19.
The work presented here addresses the problem of target detection against spatially structured interference composed of jamming plus noise, where for practical reasons, the received target wavefront may also deviate from the traditional plane wave model. This detection problem arises in over-the-horizon (OTH) radar systems where spatially distributed targets often compete for detection against directional interference that is spread over the entire range-Doppler search space. Conventional detection processing schemes are compared with a recently proposed adaptive subspace detector (ASD) that takes both the spatial structure of the interference and the possibility of target wavefront distortions into account. Experimental array data recorded by the Jindalee sky-wave and Iluka surface-wave OTH radar systems, located in central and northern Australia respectively, is used to evaluate detection performance.  相似文献   

20.
A modular and flexible approach to adaptive Kalman filtering has recently been introduced using the framework of a mixture-of-experts regulated by a gating network. Each expert is a Kalman filter modeled with a different realization of the unknown system parameters. The unknown or uncertain parameters can include elements of the state transition matrix, observation mapping matrix, process noise covariance matrix, and measurement noise covariance matrix. The gating network performs on-line adaptation of the weights given to individual filters based on performance. The mixture-of-experts approach is extended here to a hierarchical architecture which involves multiple levels of gating. The proposed architecture provides a multilevel hypothesis testing capability. The utility of the hierarchical architecture is illustrated via the problem of interplanetary navigation (Mars Pathfinder) using simulated radiometric data. It serves as a useful tool for assisting navigation teams in the process of selecting the parameters of the navigational filter over various operating regimes. It is shown that the scheme has the capability of detecting changes in the system parameters and switching filters appropriately for optimal performance. Furthermore, the expectation-maximization (EM) algorithm is shown to be applicable in the proposed framework  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号