首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
《中国航空学报》2021,34(11):15-20
A metamaterial plate is designed by embedding a periodic array of local nonlinear resonators for its supersonic flutter control. Based on the von Karman large deformation theory and supersonic piston aerodynamic theory, the nonlinear aeroelastic equations of the metamaterial plate are obtained by using the Hamilton principle. The comparisons for aeroelastic behaviors of the metamaterial plate and pure plate show that the proposed metamaterial plate can lead to an enlarged flutter boundary and lower vibration amplitude. Furthermore, a parametric optimization strategy for local nonlinear resonators is proposed to improve the nonlinear flutter behaviors of the metamaterial plate, and a significant enhancement of passive control performance can be achieved through optimization design. The present study demonstrates that the design of the metamaterial plate can provide an effective approach and potential application for nonlinear flutter suppression of supersonic plate.  相似文献   

2.
亚跨风洞中舵面亚临界颤振试验   总被引:1,自引:0,他引:1  
设计了舵面颤振试验装置,在亚跨超风洞中对展弦比2.0的NACA0012矩形舵面开展了颤振试验研究。试验马赫数范围为0.3~0.75。试验采用直接观测法获得舵面在不同质量特性条件下的亚声速和接近跨声速的颤振特性。同时还采用亚临界数据分析方法对试验的扭转应变信号进行了离线分析,即通过采用ARMA方法识别扭转应变信号的阻尼和频率,并通过阻尼外插得到颤振临界动压值。研究结果表明:该试验装置可以用于在现有亚跨超风洞中开展舵面颤振问题研究。当采集的亚临界信号为典型指数衰减信号时,以ARMA方法为基础的亚临界颤振试验技术可以稳定地识别出信号阻尼和频率,并较为准确地获得舵面的颤振临界动压、颤振频率等颤振参数。  相似文献   

3.
《中国航空学报》2016,(1):144-159
The flutter characteristics of folding control fins with freeplay are investigated by numerical simulation and flutter wind tunnel tests. Based on the characteristics of the structures, fins with different freeplay angles are designed. For a 0° angle of attack, wind tunnel tests of these fins are conducted, and vibration is observed by accelerometers and a high-speed camera. By the expansion of the connected relationships, the governing equations of fit for the nonlinear aeroelastic analysis are established by the free-interface component mode synthesis method. Based on the results of the wind tunnel tests, the flutter characteristics of fins with different freeplay angles are analyzed. The results show that the vibration divergent speed is increased, and the divergent speed is higher than the flutter speed of the nominal linear system. The vibration divergent speed is increased along with an increase in the freeplay angle. The developed free-interface component mode synthesis method could be used to establish governing equations and to analyze the characteristics of nonlinear aeroelastic systems. The results of the numerical simulations and the wind tunnel tests indicate the same trends and critical velocities.  相似文献   

4.
In this study, a multi-input/multi-output(MIMO) time-delay feedback controller is designed to actively suppress the flutter instability of a multiple-actuated-wing(MAW) wind tunnel model in the low subsonic flow regime. The unsteady aerodynamic forces of the MAW model are computed based on the doublet-lattice method(DLM). As the first attempt, the conventional linear quadratic-Gaussian(LQG) controller is designed to actively suppress the flutter of the MAW model. However, because of the time delay in the control loop, the wind tunnel tests illustrate that the LQG-controlled MAW model has no guaranteed stability margins. To compensate the time delay, hence, a time-delay filter, approximated via the first-order Pade approximation, is added to the LQG controller. Based on the time-delay feedback controller, a new digital control system is constructed by using a fixed-point and embedded digital signal processor(DSP) of high performance. Then, a number of wind tunnel tests are implemented based on the digital control system.The experimental results show that the present time-delay feedback controller can expand the flutter boundary of the MAW model and suppress the flutter instability of the open-loop aeroelastic system effectively.  相似文献   

5.
跨声速风洞全模颤振试验技术   总被引:2,自引:2,他引:0  
介绍了跨声速全模颤振试验的发展现状和存在的问题。探讨了全模颤振试验对风洞和支撑系统等试验设备的要求。对于风洞,主要从风洞洞体和流场等方面分析了进行颤振试验所需要具备的性能,并以中国空气动力研究与发展中心的2.4m跨声速风洞为例,介绍了进行颤振试验必须要采取的控制措施。对于支撑系统,则从模型运动自由度、支撑系统稳定性和支撑系统频率等方面的要求,阐述了设计支撑系统的困难,并简要分析了目前国内外发展的多种全模颤振支撑系统的结构原理及其优缺点。然后介绍了系统安全的保证措施,包括支撑系统稳定性分析、风洞紧急停车控制系统和模型保护装置等。最后根据飞行器发展的需求,探讨了今后需要完善和发展的几个主要问题。  相似文献   

6.
《中国航空学报》2021,34(1):380-396
A theoretical formulation for time-domain nonlinear aeroelastic analysis of a flexible wing model is presented and validated by wind tunnel tests. A strain-based beam model for nonlinear structural analysis is combined with the Unsteady Vortex Lattice Method (UVLM) to form the complete framework for aeroelastic analysis. The nonlinear second-order differential equations are solved by an implicit time integration scheme that incorporates a Newton-Raphson sub-iteration technique. An advanced fiber optic sensing technique is firstly used in a wind tunnel for measuring large structural deformations. In the theoretical study, the nonlinear flutter boundary is determined by analyzing the transient response about the nonlinear static equilibrium with a series of flow velocities. The gust responses of the wing model at various gust frequencies are also studied. Comparisons of the theoretical and experimental results show that the proposed method is suitable for determining the nonlinear flutter boundary and simulating the gust response of flexible wings in the time domain.  相似文献   

7.
超声速气流中受热壁板的二次失稳型颤振   总被引:1,自引:1,他引:0  
夏巍  杨智春  谷迎松 《航空学报》2009,30(10):1851-1856
研究了超声速气流中受热壁板的非线性气动弹性响应,发现了一种新的动态失稳现象——二次失稳型颤振。基于von Karman非线性应变-位移关系、Reissner-Mindlin板理论和一阶活塞理论建立超声速气流中三维壁板的有限元模型。通过数值算例,研究了超声速气流中受热壁板发生二次失稳型颤振的条件,并运用非线性振动理论分析了二次失稳型颤振的机理。研究表明,超声速气流中受热壁板在平衡态的稳定性未发生变化时,也会因系统参数的变化引起气动弹性响应性质的突变,导致壁板的二次失稳型颤振。二次失稳型颤振能否发生不仅受到气流速压和壁板温升的影响,而且还与初始扰动有关。当扰动引起壁板的初始变形较小时,不能激发出二次失稳型颤振,壁板的气动弹性响应最终收敛到屈曲平衡态。应用二次失稳型颤振理论和分析方法,确定了前人给出的一个金属壁板模型的热颤振边界的风洞试验结果,而且计算结果与试验结果符合良好,从而对这一壁板热颤振现象的风洞试验结果作出了较合理的理论解释。  相似文献   

8.
赵玲  季辰  刘子强 《航空学报》2015,36(4):1112-1118
颤振模型设计时难以实现完全的动力学相似,需要对颤振主要模态进行合理选择。采用数值分析方法,对颤振模型设计时主要模态的选取问题进行研究。通过各阶模态振型下气动刚度系数的比较、指定运动形式下广义非定常气动力的计算和不同模态截断下颤振结果的收敛特性分析,研究了颤振分析时不同模态运动之间的相互影响,对模态运动引起的气动力和颤振特性变化进行评估。以高超翼面模型为研究对象的数值算例结果表明,几种分析方法所判断的颤振主要模态基本一致。其中基于振型的广义气动刚度系数参数,避免了非定常气动力的计算,可作为颤振模型设计或颤振分析时主要模态选取的快速判断方法。  相似文献   

9.
The aero-heating of the rudder shaft region of a hypersonic vehicle is very harsh, as the peak heat flux in this region can be even higher than that at the stagnation point. Therefore, studying the aero-heating of the rudder shaft is of great significance for designing the thermal protection system of the hypersonic vehicle. In the wind tunnel test of the aero-heating effect, we find that with the increase of the angle of attack of the lifting body model, the increasement of the heat flux of the rudder shaft is larger under laminar flow conditions than that under turbulent flow conditions. To understand this, we design a wind tunnel experiment to study the effect of laminar/turbulent hypersonic boundary layers on the heat flux of the rudder shaft under the same wind tunnel freestream conditions. The experiment is carried out in the ?2 m shock tunnel(FD-14 A) affiliated to the China Aerodynamics Research and Development Center(CARDC). The laminar boundary layer on the model is triggered to a turbulent one by using vortex generators, which are 2 mm-high diamonds. The aero-heating of the rudder shaft(with the rudder) and the protuberance(without the rudder) are studied in both hypersonic laminar and turbulent boundary layers under the same freestream condition. The nominal Mach numbers are 10 and 12, and the unit Reynolds numbers are2.4 × 10~6 m~(-1) and 2.1 × 10~6 m-1. The angle of attack of the model is 20°, and the deflection angle of the rudder and the protuberance is 10°. The heat flux on the model surface is measured by thin film heat flux sensors, and the heat flux distribution along the center line of the lifting body model suggests that forced transition is achieved in the upstream of the rudder. The test results of the rudder shaft and the protuberance show that the heat flux of the rudder shaft is lower in the turbulent flow than that in the laminar flow, but the heat flux of the protuberance is the other way around,i.e., lower in the laminar flow than in the turbulent flow. The wind tunnel test results is also validated by numerical simulations. Our analysis suggests that this phenomenon is due to the difference of boundary layer velocities caused by different thickness of boundary layer between laminar and turbulent flows, as well as the restricted flow within the rudder gap. When the turbulent boundary layer is more than three times thicker than that of the laminar boundary layer, the heat flux of the rudder shaft under the laminar flow condition is higher than that under the turbulent flow condition. Discovery of this phenomenon has great importance for guiding the design of the thermal protection system for the rudder shaft of hypersonic vehicles.  相似文献   

10.
栅格舵气动与操纵特性高速风洞试验技术研究   总被引:1,自引:0,他引:1  
为研究飞行器单独栅格舵全尺寸模型气动特性,考核、验证舵控系统操纵性能,在FL-24风洞(1.2m×1.2m)开展了专项试验技术研究。首次在国内高速风洞建立了全尺寸栅格舵高速风洞试验平台,主要内容包括:风洞大载荷侧壁支撑装置设计、高速风洞模型保护装置设计、高灵敏度气动测试天平研制、模型风载条件下变形测试系统设计以及动态气动力测量与数据处理方法等。该项试验技术实现了模型气动与舵控系统以及气动与结构一体化试验验证,为栅格舵尾翼布局飞行器相关专业设计及飞行试验提供了重要试验数据。  相似文献   

11.
基于自研软件平台UNSMB,采用CFD/CSD耦合的颤振时域分析方法,对某带舵面垂尾的风洞模型进行了跨声速颤振特性分析。研究了洞壁对颤振边界的影响,通过改变网格大小,设置不同的边界条件,对洞壁的模拟方法进行了对比研究,最终获得了与试验数据吻合很好的结果,表明洞壁对模型的颤振边界存在较大影响,同时表明UNSMB平台的跨声速颤振计算具有较高的精度。  相似文献   

12.
《中国航空学报》2020,33(10):2679-2693
In recent years, the Active Flutter Suppression (AFS) employing Linear Parameter-Varying (LPV) framework has become a hot spot in the research field. Nevertheless, the flutter suppression technique is facing two severe challenges. On the one hand, due to the fatal risk of flight test near critical airspeed, it is hard to obtain the accurate mathematical model of the aeroelastic system from the testing data. On the other hand, saturation of the actuator may degrade the closed-loop performance, which was often neglected in the past work. To tackle these two problems, a new active controller design procedure is proposed to suppress flutter in this paper. Firstly, with the aid of LPV model order reduction method and State-space Model Interpolation of Local Estimates (SMILE) technique, a set of high-fidelity Linear Time-Invariant (LTI) models which are usually derived from flight tests at different subcritical airspeeds are reduced and interpolated to construct an LPV model of an aeroelastic system. And then, the unstable aeroelastic dynamics beyond critical airspeed are ‘predicted’ by extrapolating the resulting LPV model. Secondly, based on the control-oriented LPV model, an AFS controller in LPV framework which is composed of a nominal LPV controller and an LPV anti-windup compensator is designed to suppress the aeroelastic vibration and overcome the performance degradation caused by actuator saturation. Although the nominal LPV controller may have superior performance in linear simulation in which the saturation effect is ignored, the results of the numerical simulations show that the nominal LPV controller fails to suppress the Body Freedom Flutter (BFF) when encountering the actuator saturation. However, the LPV anti-windup compensator not only enhances the nominal controller’s performance but also helps the nominal controller to stabilize the unstable aeroelastic system when encountering serious actuator saturation.  相似文献   

13.
《中国航空学报》2020,33(12):3100-3111
To predict the flutter dynamic pressure of a wind tunnel model before flutter test, an accurate Computational Fluid Dynamics/Computational Structural Dynamics (CFD/CSD)-based flutter prediction method is proposed under the conditions of a 2.4 m × 2.4 m transonic wind tunnel with porous wall. From the CFD simulations of the flows through an inclined hole of this wind tunnel, the Nambu’s linear porous wall model between the flow rate and the differential pressure is extended to the porous wall with inclined holes, so that the porous wall can be conveniently modeled as a boundary condition. According to the flutter testing approach for the current wind tunnel, the steady CFD calculation is conducted to achieve the required inlet Mach number. A time-domain CFD/CSD method is then employed to evaluate the structural response of the experimental model, and the critical flutter point is obtained by increasing the dynamic pressure step by step at a fixed Mach number. The present method is applied to the flutter calculations for a vertical tail model and an aircraft model tested in the current transonic wind tunnel. For both models, the computed flutter characteristics agree well with the experimental results.  相似文献   

14.
杨智春  赵令诚  姜节胜 《航空学报》1993,14(11):640-643
对结构非线性颤振的半主动控制即“颤振驯化”方案进行了理论及实验研究。以二无非线性颤振系统为对象,分析了半主动控制的原理及带有半主动控制环节后系统的响应特性。设计了相应的颤振半主动控制的风洞实验模型,系统响应信号的监测处理、刚度调节机构的运转控制由以8031芯片为主体的单片机来完成。风洞实验取得了良好的控制效果。  相似文献   

15.
《中国航空学报》2016,(1):91-103
A theoretical nonlinear aeroelastic response analysis for a flexible high-aspect ratio wing excited by harmonic gust load is presented along with a companion wind tunnel test. A multidisci-plinary coupled numerical calculation is developed to simulate the flexible model wing undergoing gust load in the time domain via discrete nonlinear finite element structural dynamic analysis and nonplanar unsteady vortex lattice aerodynamic computation. A dynamic perturbation analysis about a nonlinear static equilibrium is also used to determine the small perturbation flutter bound-ary. A novel noncontact 3-D camera measurement analysis system is firstly used in the wind tunnel test to obtain the spatial large deformation and responses. The responses of the flexible wing under different static equilibrium states and frequency gust loads are discussed. The fair to good quanti-tative agreements between the theoretical and experimental results demonstrate that the presented analysis method is an acceptable way to predict the geometrically nonlinear gust response for flex-ible wings.  相似文献   

16.
王超  张征宇  殷国富  孙岩  朱伟军 《航空学报》2014,35(5):1193-1199
高速风洞静弹性模型设计和制造是静弹性风洞试验的一个关键。为解决模型设计周期长、制造费用高等问题,提出了一种基于立体光固化快速成型面向高速风洞大展弦比机翼静弹性模型研制方法。基于机翼刚度分布相似参数,采用机翼钢梁骨架和树脂蒙皮组合结构,通过优化结构尺寸完成静弹性模型结构设计;使用机械加工和快速成型技术完成模型制造,并通过地面刚度试验对加工模型进行了刚度分布验证。风洞试验结果表明:基于立体光固化成型技术设计和制造的静弹性风洞试验模型工程实用、可行,与传统静弹性模型研制过程相比,具有研制周期短、成本低而且不存在因填充物带来附加刚度的显著优势。  相似文献   

17.
This paper attempts to develop a scaling procedure to measure structural vibration caused simultaneously by wall pressure fluctuations and the thermal load of hypersonic flow by a wind tunnel test. However, simulating the effect of thermal load is difficult with a scaled model in a wind tunnel due to the nonlinear effect of thermal load on a structure. In this work, the temperature variation of a structure is proposed to indicate the nonlinear effect of the thermal load,which provides a means to simulate both the thermal load and wall pressure fluctuations of a hypersonic Turbulent Boundary Layer(TBL) in a wind tunnel test. To validate the scaling procedure,both numerical computations and measurements are performed in this work. Theoretical results show that the scaling procedure can also be adapted to the buckling temperature of a structure even though the scaling procedure is derived from a reference temperature below the critical temperature of the structure. For the measurement, wall pressure fluctuations and thermal environment are simulated by creating hypersonic flow in a wind tunnel. Some encouraging results demonstrate the effectiveness of the scaling procedure for assessing structural vibration generated by hypersonic flow. The scaling procedure developed in this study will provide theoretical support to develop a new measurement technology to evaluate vibration of aircraft due to hypersonic flow.  相似文献   

18.
压气机风扇叶片颤振预测和抑制的工程研究   总被引:6,自引:2,他引:4  
通过能量法对某压气机风扇试验件叶片原型方案进行气弹稳定性预测,计算出该方案的颤振边界点.对其中气弹不稳定叶片的几何造型进行修改以提高气弹稳定性.通过原型和改型方案的叶片几何造型、气动性能、振动特性以及气弹稳定性的对比,从气动角度分析了压气机风扇叶片颤振的机理.获得了工程上抑制压气机风扇叶片颤振的有效手段,如增大叶片弦长、降低展弦比,增大叶片厚度、增强叶片刚性,减小攻角、改善流动状况.   相似文献   

19.
不同迎角的翼型气弹特性风洞实验研究   总被引:1,自引:0,他引:1  
基于可在不同迎角下作沉浮、俯仰两自由度运动的翼段振动装置,在低速风洞中分别针对普通薄翼型NA-CA0012和风力机翼型NREL S809进行气动弹性测试,得到不同实验状态的气动弹性振动时域响应。分别观察到经典颤振和失速颤振现象,并证明了迎角改变对两种翼型颤振特性的影响。  相似文献   

20.
Many control laws, such as optimal controller and classical controller, have seen their applications to suppressing the aeroelastic vibrations of the aeroelastic system. However, those control laws may not work effectively if the aeroelastic system involves actuator faults. In the current study for wing flutter of reentry vehicle, the effect of actuator faults on wing flutter system is rarely considered and few of the fault-tolerant control problems are taken into account. In this paper, we use the radial basis function neural network and the finite-time H_∞ adaptive fault-tolerant control technique to deal with the flutter problem of wings, which is affected by actuator faults, actuator saturation, parameter uncertainties and external disturbances. The theory of this article includes the modeling of wing flutter and fault-tolerant controller design. The stability of the finite-time adaptive fault-tolerant controller is theoretically proved. Simulation results indicate that the designed fault-tolerant flutter controller can effectively deal with the faults in the flutter system and can promptly suppress the wing flutter as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号