首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In recent years, some contradictory data about the effects of microgravity on radiation-induced biological responses in space experiments have been reported. We prepared a damaged template DNA produced with an alkylating agent (N-methyl-N-nitroso urea; MNU) to measure incorrect base-incorporation during DNA replication in microgravity. We examined whether mutation frequency is affected by microgravity during DNA replication for a DNA template damaged by an alkylating agent. Using an in vitro enzymatic reaction system, DNA synthesis by Taq polymerase or polymerase III was done during a US space shuttle mission (Discovery, STS-91). After the flight, DNA replication and mutation frequencies were measured. We found that there was almost no effect of microgravity on DNA replication and mutation frequency. It is suggested that microgravity might not affect at the stage of substrate incorporation in induced-mutation frequency.  相似文献   

2.
We reported previously that emerged amoebae of Dictyostelium (D.) discoideum grew, aggregated and differentiated to fruiting bodies with normal morphology in space. Here, we investigated the effects of space radiation and/or microgravity on the number, viability, kinetics of germination, growth rate and mutation frequency of spores formed in space in a radiation-sensitive strain, gamma s13, and the parental strain, NC4. In gamma s13, there were hardly spores in the fruiting bodies formed in space. In NC4, we found a decrease in the number of spores, a delay in germination of the spores and delayed start of cell growth of the spores formed in space when compared to the ground control. However, the mutation frequency of the NC4 spores formed in space was similar to that of the ground control. We conclude that the depression of spore formation might be induced by microgravity and/or space radiation through the depression of some stage(s) of DNA repair during cell differentiation in the slime mold.  相似文献   

3.
本文通过回顾国外微重力空间实验的发展,着重分析研究发展趋向及微重力流体科学在空间材料科学中的地位。基于我们理论和地面实验工作基础,提出对微重力流体科学空间实验的一些设想。最后,我们着重说明为什么把Marangoni对流和液体桥的稳定作为近期重点跟踪课题。  相似文献   

4.
基于空间微重力下植物的生物学效应及其微重力信号转导研究需要,在微重力条件下培养拟南芥,获得经微重力条件生长的拟南芥样品.在空间实验过程中实时采集、存储和传输植物样品的数字图像,并根据生物样品的生长周期对生物样品进行低温固定和储存,再由返回式卫星带回地面,开展微重力植物生物学效应研究.   相似文献   

5.
In view of the concern for the health of astronauts that may one day journey to Mars or the Moon, we investigated the effect that space radiation and microgravity might have on DNA damage and repair. We sent frozen human lymphoblastoid TK6 cells to the International Space Station where they were maintained under frozen conditions during a 134-day mission (14 November 2008 to 28 March 2009) except for an incubation period of 8 days under 1G or μG conditions in a CO2 incubator. The incubation period started after 100 days during which the cells had been exposed to 54 mSv of space radiation. The incubated cells were then refrozen, returned to Earth, and compared to ground control samples for the determination of the influence of microgravity on cell survival and mutation induction. The results for both varied from experiment to experiment, yielding a large SD, but the μG sample results differed significantly from the 1G sample results for each of 2 experiments, with the mean ratio of μG to 1G being 0.55 for the concentration of viable cells and 0.59 for the fraction of thymidine kinase deficient (TK) mutants. Among the mutants, non-loss of zygosity events (point mutations) were less frequent (31%) after μG incubation than after 1G incubation, which might be explained by the influence of μG on cellular metabolic or physiological function. Additional experiments are needed to clarify the effect of μG interferes on DNA repair.  相似文献   

6.
The Closed Equilibrated Biological Aquatic System (C.E.B.A.S.) Mini-Module, a Space Shuttle middeck locker payload which supports a variety of aquatic inhabitants (fish, snails, plants and bacteria) in an enclosed 8.6 L chamber, was tested for its biological stability in microgravity. The aquatic plant, Ceratophyllum demersum L., was critical for the vitality and functioning of this artificial mini-ecosystem. Its photosynthetic pigment concentrations were of interest due to their light harvesting and protective functions. "Post-flight" chlorophyll and carotenoid concentrations within Ceratophyllum apical segments were directly related to the quantities of light received in the experiments, with microgravity exposure (STS-89) failing to account for any significant deviation from ground control studies.  相似文献   

7.
Life span is the most interesting and also the most important biologically relevant time to be investigated on the space station. As a model experiment, we proposed an investigation to assess the life span of clone generation of the ciliate Paramecium. In space, clone generation will be artificially started by conjugation or autogamy, and the life span of the cell populations in different gravitational fields (microgravity and onboard 1 x g control) will be precisely assessed in terms of fission age as compared with the clock time. In order to perform the space experiment including long-lasting culture and continuous measurement of cell division, we tested the methods of cell culture and of cell-density measurement, which will be available in closed environments under microgravity. The basic design of experimental hardware and a preliminary result of the cultivation procedure are described.  相似文献   

8.
Life span is the most interesting and also the most important biologically relevant time to be investigated on the space station. As a model experiment, we proposed an investigation to assess the life span of clone generation of the ciliate Paramecium. In space, clone generation will be artificially started by conjugation or autogamy, and the life span of the cell populations in different gravitational fields (microgravity and onboard 1 x g control) will be precisely assessed in terms of fission age as compared with the clock time. In order to perform the space experiment including long-lasting culture and continuous measurement of cell division, we tested the methods of cell culture and of cell-density measurement, which will be available in closed environments under microgravity. The basic design of experimental hardware and a preliminary result of the cultivation procedure are described.  相似文献   

9.
In 2016 and 2017, SJ-10 and TG-2 satellites were launched. In this short paper, we report recent progress on the studies of manipulation of colloidal droplets and instability of thermocapillary convection in large Prandtl number liquid bridge that based on the space experiments boarding SJ-10 and TG-2 satellites, separately. It was shown that the colloidal droplets can be successfully formed and manipulated in microgravity through the patterned substrates. In another aspect, the coffee-ring effect was observed at the first time in space. For the studies of the instability of thermocapillary convection in large Prandtl number liquid bridge in microgravity, our experiments in TG-2 broadened the way of such kind of study and abundant experimental results are emerging.   相似文献   

10.
The influence of cosmic radiation and/or microgravity on insect development was studied during the 7 day German Spacelab Mission D1. Eggs of Carausius morosus of five stages differing in sensitivity to radiation and in capacity to regeneration were allowed to continue their development in the BIORACK 22°C incubator, either at microgravity conditions or on the 1 g reference centrifuge. Using the Biostack concept - eggs in monolayers were sandwiched between visual track detectors - and the 1 g reference centrifuge, we were able to separate radiation effects from microgravity effects and also from combined effects of these two factors in space. After retrieval, hatching rates, growth kinetics and anomaly frequencies were determined in the different test samples. The early stages of development turned out to be highly sensitive to single hits of cosmic ray particles as well as to the temporary exposure to microgravity during their development. In some cases, the combined action of radiation and microgravity even amplified the effects exerted by the single parameters of space. Hits by single HZE particles caused early effects, such as body anomalies, as well as late effects, such as retarded growth after hatching. Microgravity exposure lead to a reduced hatching rate. A synergistic action of HZE particle hits and microgravity was established in the unexpectedly high frequency of anomal larvae. However, it cannot be excluded, that cosmic background radiation or low LET HZE particles are also causally involved in damage observed in the microgravity samples.  相似文献   

11.
Astronauts and experimental animals in space develop the anemia of space flight, but the underlying mechanisms are still unclear. In this study, the impact of simulated microgravity on proliferation, cell death, cell cycle progress and cytoskeleton of erythroid progenitor-like K562 leukemia cells was observed. K562 cells were cultured in NASA Rotary Cell Culture System (RCCS) that was used to simulate microgravity (at 15 rpm). After culture for 24 h, 48 h, 72 h, and 96 h, the cell densities cultured in RCCS were only 55.5%, 54.3%, 67.2% and 66.4% of the flask-cultured control cells, respectively. The percentages of trypan blue-stained dead cells and the percentages of apoptotic cells demonstrated no difference between RCCS-cultured cells and flask-cultured cells at every time points (from 12 h to 96 h). Compared with flask-cultured cells, RCCS culture induced an accumulation of cell number at S phase concomitant with a decrease at G0/G1 and G2/M phases at 12 h. But 12 h later (from 24 h to 60 h), the distribution of cell cycle phases in RCCS-cultured cells became no difference compared to flask-cultured cells. Consistent with the changes of cell cycle distribution, the levels of intercellular cyclins in RCCS-cultured cells changed at 12 h, including a decrease in cyclin A, and the increasing in cyclin B, D1 and E, and then (from 24 h to 36 h) began to restore to control levels. After RCCS culture for 12–36 h, the microfilaments showed uneven and clustered distribution, and the microtubules were highly disorganized. These results indicated that RCCS-simulated microgravity could induce a transient inhibition of proliferation, but not result in apoptosis, which could involve in the development of space flight anemia. K562 cells could be a useful model to research the effects of microgravity on differentiation and proliferation of hematopoietic cells.  相似文献   

12.
C.E.B.A.S.-AQUARACK is a long-term multi-generation experimental device for aquatic organisms which is disposed for utilization in a space station. It results from the basic idea of a space aquarium for maintaining aquatic animals for longer periods integrated in a AQUARACK which consists of a modular animal holding tank, a semi-biological/physical water recycling system and an electronical control unit. The basic idea to replace a part of the water recycling system by a continuous culture of unicellular algae primarily leads to a second system for experiments with algae, a botanical AQUARACK consisting of an algal reactor, a water recyling and the electronical control unit. The combination of the zoological part, and the botanical part with a common control system in the AQUARACK, however, results in a "Closed Equilibrated Biological Aquatic System" (C.E.B.A.S.) representing an closed artificial ecosystem. Although this is disposed primarily as an experimental device for basic zoological, botanical and interdisciplinary research it opens the theoretical possibility to adapt it for combined production of animal and plant biomass on ground or in space. The paper explains the basic conception of the hardware construction of the zoological part of the system, the corresponding scientific frame program including the choice of the experimental animals and gives some selected examples of the hardware-related research. It further on discusses the practical and economical relevance of the system in the development of a controlled aquatical life support system in general.  相似文献   

13.
The influence of microgravity on lymphocyte activation is central to the understanding of immunological function in space. Moreover, the adaptation of groundbased technologies to microgravity conditions presents opportunities for biotechnological applications including high efficiency production of antibody forming hybridomas. Because the emerging technology of microgravity hybridoma generation is dependent upon activation and cultivation of B lymphocytes during flight, we have adapted mitogen-driven B lymphocyte stimulation and culture that allows for the in vitro generation of large numbers of antibody forming cells suitable for cell fusion over a period of 1-2 weeks. We believe that this activation and cultivation system can be flown on near-term space flights to test fundamental hypotheses about mammalian cell activation, cell fusion, metabolism, secretion, growth, and bio-separation.  相似文献   

14.
空间站微重力流体实验设备需求分析   总被引:1,自引:0,他引:1       下载免费PDF全文
对国际空间站和中国科学实验卫星及载人飞行器上开展的微重力流体实验情况进行论述和分析,重点分析了国际空间站(ISS)微重力流体科学实验设备情况.根据中国空间微重力流体物理科学发展需求,结合国际空间站微重力流体科学实验对设备的需求,提出了未来在中国空间站开展微重力流体实验时空间实验设备需要重点考虑和解决的问题,同时提出相关设计建议.   相似文献   

15.
空间科学实验通用地面检测系统研制   总被引:1,自引:1,他引:0       下载免费PDF全文
分析了地面检测设备在空间有效载荷研制过程中的作用,提出一种用于对多种空间微重力科学实验设备(载荷)进行地面测试的通用地面检测设备设计方法.通过载荷特性分析,对载荷中的控制对象进行分类.针对不同控制对象使用不同的操作进行控制.将载荷实验过程分解为一系列固定时刻执行的操作,通过配置静态配置表、动作配置表和动态配置表,实现对载荷实验过程的控制.地面检测设备由计算机、电源和RS422通信接口构成.针对不同载荷,使用规格一致的电缆和通信接口,保证地面监测设备的通用性.地面检测设备配合多功能炉、骨髓培养箱、辐射基因箱、煤燃烧箱、蒸发对流箱、导线特性箱及胶体材料箱7台载荷开展研制工作,在各载荷试验参数确定、空间试验流程确定、设备性能测试、环境模拟实验、电磁兼容实验、地面匹配实验以及载荷设备验收等过程中发挥了重要作用.   相似文献   

16.
针对在微重力环境中运行的载人航天飞行器上的电缆和导线在工作时由于电流过载导致温度升高而引起着火的情况,提出了"功能模拟"实验原理,并且利用地面实验设备对微重力环境下导线的着火前期特性进行了功能模拟实验研究.通过实验,得到了在微重力情况下由于浮升力的减小使自然对流减弱导致电流过载时导线的热平衡温度高于地面正常重力情况,从而证明了这正是引起航天飞行器着火的潜在点火源.   相似文献   

17.
As scientific experiment payloads, microgravity experiments of fluid physics, life science,combustion science, physics and accelerator measurement were conducted on board the Chinese recoverable satellite SJ-8 during 18-day orbital flight. The experimental payloads and an experiment support system constituted the microgravity experiment system of the flight mission. This article has presented the briefs of the scientific achievements of these space experiments, the composition and performance of the Microgravity Experimental System (MES) and the general picture of the overall flight mission, respectively.   相似文献   

18.
Advances of microgravity sciences in China are introduced. The research works include ground-based study and space experiments. In the recent years, the main means still are theoretical analysis, numerical simulation, ground-based experiment, and short-time microgravity experiments of drop tower. Besides, many space experiment projects are arranged. SJ-10 recoverable satellite will carry out 19 scientific experiment projects. Nine of them are for microgravity Sciences. The other ways for space microgravity experiment are with the help of Chinese Shenzhou spacecraft, Chinese Tiangong space laboratory, and Chinese space station in the near future. The Chinese space station will become main platform of Chinese microgravity sciences experiment in space.   相似文献   

19.
Studies from the Skylab, SL-3 and D-1 missions have demonstrated that biological organisms grown in microgravity have changes in basic cellular functions such as DNA, mRNA and protein synthesis, cytoskeleton synthesis, glucose utilization and cellular differentiation. Since microgravity could affect prokaryotic and eukaryotic cells at a subcellular and molecular level, space offers us an opportunity to learn more about basic biological systems with one important variable removed. The thin film bioreactor will facilitate the handling of fluids in microgravity, under constant temperature and will allow multiple samples of cells to be grown with variable conditions. Studies on cell cultures grown in microgravity would enable us to identify and quantify changes in basic biological function in microgravity which are needed to develop new applications of orbital research and future biotechnology.  相似文献   

20.
The first microgravity protein crystal growth experiments were performed on Spacelab I by Littke and John. These experiments indicated that the space grown crystals, which were obtained using a liquid-liquid diffusion system, were larger than crystals obtained by the same experimental system on earth. Subsequent experiments were performed by other investigators on a series of space shuttle missions from 1985 through 1990. The results from two of these shuttle flights (STS-26 and STS-29) have been described previously. The results from these missions indicated that the microgravity grown crystals for a number of different proteins were larger, displayed more uniform morphologies, and yielded diffraction data to significantly higher resolutions than the best crystals of these proteins grown on earth. This paper presents the results obtained from shuttle flight STS-32 (flown in January, 1990) and preliminary results from the most recent shuttle flight, STS-31 (flown in April, 1990).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号