首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 727 毫秒
1.
通过试验方法对不同纤维体积含量的炭纤维三维四向编织结构复合材料振动性能进行了研究,根据试验结果分析了纤维体积含量对材料的振动性能的影响.试验表明,炭纤维三维四向编织复合材料随着纤维体积含量的增加,固有频率增大,阻尼比减小;纤维体积含量越大,传递函数的共振峰值越高,加速度衰减曲线越衰减缓慢,材料的阻尼特性减小.  相似文献   

2.
讨论了混杂纤维复合材料体积含量和质量含量的定义和作用;推导出了由质量含量确定体积含量或由体积含量确定质量含量的计算公式;给出了孔隙率的定义和确定孔隙率的方法.由于单一纤维复合材料是混杂纤维复合材料的特例,文中给出的计算公式同样适用于单一纤维复合材料.  相似文献   

3.
文章主要讨论了三维纺织预制件,包括:机织、针织、编织和缝合三维织物在结构上的特点。由于在三维纺织复合材料中,纤维在三维空间中相互交织和交叉,形成了一个不分层的整体结构,所以它和层合复合材料相比,具有优良的层间性能和其它力学性能,可制作第一承力结构件和高功能制件。文章还介绍了树脂基三维纺织复合材料的复合固化技术,包括树脂传递模塑技术和树脂膜融渗技术。通过文章,说明了三维纺织复合材料具有广泛的应用前景。  相似文献   

4.
针对纤维增强复合材料失效机理复杂的问题,采用数字图像相关法对拉伸试验中的复合材料表面位移进行数字化处理,建立了基于Hashin改进准则的结构模型,对比试验和仿真结果,分析试件的失效过程和机理。运用蒙特卡洛方法和有限元法,讨论并分析影响结果精度的因素。结果表明,数字图像相关法能够用于观察和分析复合材料结构的失效过程;基于Hashin改进准则的仿真模型与试验结果一致,可以作为进一步细观力学分析的基础;相对于其他结构参数,纵向拉伸强度对结果精度的影响更大。该结果可为复合材料可靠性分析提供理论参考。  相似文献   

5.
采用三维机织工艺结合树脂传递模塑(RTM)技术制备了两种碳-芳纶混杂正交三向复合材料,即z向纱均采用芳纶纤维,经纬纱分别为炭纤维和经纬纱间隔排列炭纤维和芳纶纤维的混杂正交三向复合材料,以恒定应力幅值、应力比和频率,开展了复合材料经向拉伸疲劳性能试验,通过与炭纤维复合材料的对比,分析了碳-芳纶混杂方式对复合材料拉伸疲劳性能(疲劳寿命、疲劳破坏特征和疲劳后强度/刚度)的影响。当z向纱选用芳纶纤维,面内经纬纱为炭纤维的混杂复合材料经向拉伸疲劳寿命表现出正混杂效应;当进一步混入芳纶纤维,面内经纬纱为炭纤维和芳纶纤维间隔排列正交三向复合材料疲劳寿命表现为负混杂效应,对疲劳刚度损失有一定的抑制作用。可见,炭纤维正交三向复合材料中引入芳纶纤维,对其复合材料拉伸疲劳性能有重要影响,通过设计纤维混杂方式和混杂比例可进一步提高复合材料疲劳性能。  相似文献   

6.
碳/环氧编织复合材料热膨胀特性分析   总被引:1,自引:0,他引:1  
采用理论与试验相结合的方法,研究了碳/环氧三维编织复合材料的热膨胀特性。通过试验方法获得了不同规格的三维编织复合材料在编织方向的热膨胀系数,并基于均匀化理论建立了编织材料热弹性性能的分析方法,对数值结果与试验值进行了比较。研究表明,三维编织复合材料在编织方向上具有典型的负膨胀特性;与三维四向编织结构复合材料相比,三维五向编织结构复合材料具有较小的负膨胀系数;三维编织复合材料编织方向的负膨胀系数随着纤维体积含量的增大而减小,随着编织角的增大而增大;基于均匀化理论的热弹性数值分析方法可有效地预报三维编织复合材料的等效热膨胀系数,数值计算值与试验结果吻合较好。  相似文献   

7.
采用三维实体有限元方法,结合周期性边界条件,分析了平面机织复合材料在剪切情况下损伤的起始、扩展、直至最终破坏的全过程。分析中抛弃了以往损伤研究中采用的“单元消失“技术,对破坏的基体单元和纤维束单元均按方向进行刚度折减。制作了纵横剪切试件并进行了相应的试验。计算结果和试验结果吻合良好,证明研究方法的正确性。  相似文献   

8.
含缺陷三维编织复合材料热膨胀系数计算   总被引:2,自引:0,他引:2  
通过将细观力学的Eshelby和Mori-Tanaka理论与刚度平均化方法相结合,对含定向基体微裂纹的三维编织复合材料热膨胀系数进行了理论计算,分析了纤维体积含量,微裂纹密度和编织参数变化对热膨胀系数的影响,为材料设计和应用提供了理论基础。  相似文献   

9.
本文采用弹塑性细观力学分析法研究了由于降温和随后的吸湿作用,在复合材料中,特别是在纤维/基体界面上所产生的应力。分析了四种聚合物基体复合材料,它们是高、中、低模量的石墨纤维、S 玻璃纤维与常用结构环氧为基体的复合材料。假定纤维体积含量为60%,采用了 GY—70,HMS 和 AS 石墨纤维、S 玻璃纤维和 Hercules 3501环氧的实测性能数据。  相似文献   

10.
在等参化有限元体积直接平均法(FVDAM)中引入等效湿胀系数,建立了复合材料湿热耦合的细观应力场分析模型。计算了湿热环境中不同纤维体积含量和湿含量复合材料的细观应力场。结果表明:湿热环境中复合材料界面径向应力最大值发生于纤维密集区的相邻纤维间的界面处,最小值出现在基体富区;初始吸湿对热残余应力有释放作用,最终吸湿的影响将超过热残余应力,界面应力状态也随之改变。计算所得细观应力场与有限元(FEM)法有较好的一致性。  相似文献   

11.
采用压缩实验对三维编织四向、五向和六向结构炭纤维预制件在受压时的厚度与纤维体积含量的变化和压缩参数进行了研究,得到了首次压缩后干湿态炭纤维预制件的最大纤维体积含量,以及干态炭纤维预制件3次压缩后的最终纤维体积含量.结果表明,预制件的干湿状态和受压缩次数对预制件的压缩性有显著影响.预制件在卸除载荷后发生部分回弹,各编织结构预制件的初始预制件体积压缩性随着压缩次数的增加而减小;从结构上看,各编织结构预制件的编织纱截面和轴纱截面形状在压缩后发生改变.  相似文献   

12.
探讨了用电阻法测量SiC/Al复合材料中纤维体积分数的可能性。同时,还研究了该复合材料经不同温度下处理后电阻率的变化。结果表明,只要将实测SiC/Al复合材料的电阻率乘以0.95,用电阻法确定其纤维体积分数是可行的。在873K以下处理SiC/Al复合材料后其电阻率无明显变化。在873K以上处理后其电阻率明显升高,表明用电阻法分析和判断SiC/Al复合材料中的界面反应是可能的。  相似文献   

13.
引入三维编织石英纤维织物作为热密封材料,对三维四向、三维五向编织结构热密封材料试样进行了不同压缩率下透气性能试验。分析了三维编织结构热密封材料气体渗透量随压缩率、压差及编织工艺参数的变化规律。结果表明,通过优化编织结构,有利于提高试样的气密性能;试样的平均气体渗透量受纤维体积含量影响,随压缩率的增大而降低;在压缩率为10%与20%时,纤维体积含量为50%的三维四向试样相比气密性能更好,平均气体渗透量分别为1.14×10~(-6)、9.29×10~(-7)kg/(s·mm);当压缩率增加到30%时,试样出现明显剪切变形和碎裂,试样失效。通过合理设计,三维编织石英纤维织物可满足密封材料气密性能要求。  相似文献   

14.
多向编织碳/碳复合材料的强度与断裂   总被引:4,自引:1,他引:4  
本文研究了细编穿刺三向C/C复合材料的拉压特性,分析相应的微观破坏模式,实测了C/C复合材料中Z向纤维束力学性能的统计分布规律。结果表彰:细编穿刺三向C/C复合材料在拉伸和压缩载荷作用下具有双模量和呈现非线性。Z向强度受穿刺纤维束纤维根数和间距控制,用最弱环连接理论考虑Z向纤维强度的统计分布,预报σ-ε关系与实验符合较好。XY向强度由碳布强度贡献,其破坏主要是碳布层间的拉剪断裂。  相似文献   

15.
根据细编穿刺复合材料的细观和微观结构,分别建立了纤维束和细编穿刺单胞有限元模型。采用周期性非绝热温度边界条件,计算了纤维束和材料整体的等效热导率。计算结果与经验公式比较,具有高度的一致性。在此基础上,进一步研究了纤维体积分数、基体和纤维热导率对材料热导率的影响。结果表明,随着纤维含量的增加,材料两个方向热导率均有不同程度的下降,且差异逐渐减小,且基体对热导率影响作用较大。文中采用的模型和周期性边界条件与理论预期符合较好,为材料热学和热力耦合问题的分析提供了有用参考。  相似文献   

16.
针对8 m×5 m的柔性太阳翼在倒立状态下进行模态试验,设计数字摄像视觉测振系统,基于图像特征跟踪法实现了从相机标定、图像采集、信息提取到三维振动数据获取的过程,通过工况模态辨识方法获取了柔性太阳翼模态频率及振型等动力学参数。并考虑空气和重力影响建立太阳翼有限元模型,通过与基于基恩士激光位移传感器的传统模态试验结果及仿真分析结果进行对比,验证了基于视觉测振工况模态试验方法的准确性,为柔性太阳翼在轨模态辨识奠定基础。  相似文献   

17.
混杂纤维增韧SiC基复合材料的强度分布   总被引:1,自引:0,他引:1  
以采用化学气相渗透法(CVI)制备的SiC纤维和C纤维混杂增韧SiC基复合材料((SiC-C)/SiC)的弯曲强度数据为依据,以Weibull分布为假设,采用图解法结合逐步回归优选法进行参数估计,并采用Kolmogorov-Smirnov法对(SiC-C)/SiC复合材料的强度分布进行假设检验。结果表明,(SiC-C)/SiC复合材料的强度统计服从Weibull分布。依据获得Weibull分布函数预测(SiC-C)/SiC的强度值与实验值偏差仅为0.19%,复合材料强度可靠性较好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号