首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
This paper reviews observations of the rings of Saturn at visual, infrared, and radio wave-lengths. Critical assessments are made of attempts to derive the physical characteristics of the rings from these measurements. A discussion is also given of the origin and evolution of the rings.  相似文献   

3.
The Cassini mission provides a great opportunity to enlarge our knowledge of atmospheric electricity at the gas giant Saturn. Following Voyager studies, the RPWS (Radio and Plasma Wave Science) instrument has measured again the so-called SEDs (Saturn Electrostatic Discharges) which are the radio signature of lightning flashes. Observations by Cassini/ISS (Imaging Science Subsystem) have shown cloud features in Saturn’s atmosphere whose occurrence, longitudinal drift rate, and brightness were strongly related to the SEDs. In this paper we will review the main physical parameters of the SEDs. Lightning does not only give us clues about the dynamics of the atmosphere, but also serves as a natural tool to investigate properties of Saturn’s ionosphere. We will also discuss other lightning related phenomena and compare Saturn lightning with terrestrial and Jovian lightning.  相似文献   

4.
5.
6.
Methods of determining helium on Jupiter (and the Jovian planets) are critically surveyed. Current information is consistent with solar abundance, He/H2 = 0.11 by number. The available lines of evidence are the mean density, spectral-line broadening, and stellar occultations. Methods usable from spacecraft flying by are discussed. Observation of far-infrared emission has great promise, but we may have to await the development of entry probes for the greatest assurance.This is one of the publications by the Science Advisory Group.  相似文献   

7.
Levy  David H. 《Space Science Reviews》1998,85(3-4):523-545
The discovery of Comet Shoemaker-Levy 9 in March 1993 opened an extraordinary few years in the study of the history of impacts in the solar system. This review paper offers a background that attempts to set the events of 1993 and 1994 into a historical context, and describes events leading to the discovery and the mounting of a unique and unprecedented international effort to observe the comet's collision with Jupiter. A selection of the results is presented to explore how the fate of Comet Shoemaker-Levy 9 has affected scientific and popular understanding of impacts in the solar system.  相似文献   

8.
9.
10.
11.
12.
13.
Saturn??s rich magnetospheric environment is unique in the solar system, with a large number of active magnetospheric processes and phenomena. Observations of this environment from the Cassini spacecraft has enabled the study of a magnetospheric system which strongly interacts with other components of the saturnian system: the planet, its rings, numerous satellites (icy moons and Titan) and various dust, neutral and plasma populations. Understanding these regions, their dynamics and equilibria, and how they interact with the rest of the system via the exchange of mass, momentum and energy is important in understanding the system as a whole. Such an understanding represents a challenge to theorists, modellers and observers. Studies of Saturn??s magnetosphere based on Cassini data have revealed a system which is highly variable which has made understanding the physics of Saturn??s magnetosphere all the more difficult. Cassini??s combination of a comprehensive suite of magnetospheric fields and particles instruments with excellent orbital coverage of the saturnian system offers a unique opportunity for an in-depth study of the saturnian plasma and fields environment. In this paper knowledge of Saturn??s equatorial magnetosphere will be presented and synthesised into a global picture. Data from the Cassini magnetometer, low-energy plasma spectrometers, energetic particle detectors, radio and plasma wave instrumentation, cosmic dust detectors, and the results of theory and modelling are combined to provide a multi-instrumental identification and characterisation of equatorial magnetospheric regions at Saturn. This work emphasises the physical processes at work in each region and at their boundaries. The result of this study is a map of Saturn??s near equatorial magnetosphere, which represents a synthesis of our current understanding at the end of the Cassini Prime Mission of the global configuration of the equatorial magnetosphere.  相似文献   

14.
The Cassini Imaging Science Subsystem (ISS) is the highest-resolution two-dimensional imaging device on the Cassini Orbiter and has been designed for investigations of the bodies and phenomena found within the Saturnian planetary system. It consists of two framing cameras: a narrow angle, reflecting telescope with a 2-m focal length and a square field of view (FOV) 0.35 across, and a wide-angle refractor with a 0.2-m focal length and a FOV 3.5 across. At the heart of each camera is a charged coupled device (CCD) detector consisting of a 1024 square array of pixels, each 12 μ on a side. The data system allows many options for data collection, including choices for on-chip summing, rapid imaging and data compression. Each camera is outfitted with a large number of spectral filters which, taken together, span the electromagnetic spectrum from 200 to 1100 nm. These were chosen to address a multitude of Saturn-system scientific objectives: sounding the three-dimensional cloud structure and meteorology of the Saturn and Titan atmospheres, capturing lightning on both bodies, imaging the surfaces of Saturn’s many icy satellites, determining the structure of its enormous ring system, searching for previously undiscovered Saturnian moons (within and exterior to the rings), peering through the hazy Titan atmosphere to its yet-unexplored surface, and in general searching for temporal variability throughout the system on a variety of time scales. The ISS is also the optical navigation instrument for the Cassini mission. We describe here the capabilities and characteristics of the Cassini ISS, determined from both ground calibration data and in-flight data taken during cruise, and the Saturn-system investigations that will be conducted with it. At the time of writing, Cassini is approaching Saturn and the images returned to Earth thus far are both breathtaking and promising.This revised version was published online in July 2005 with a corrected cover date.  相似文献   

15.
The Composite Infrared Spectrometer (CIRS) is a remote-sensing Fourier Transform Spectrometer (FTS) on the Cassini orbiter that measures thermal radiation over two decades in wavenumber, from 10 to 1400 cm− 1 (1 mm to 7μ m), with a spectral resolution that can be set from 0.5 to 15.5 cm− 1. The far infrared portion of the spectrum (10–600 cm− 1) is measured with a polarizing interferometer having thermopile detectors with a common 4-mrad field of view (FOV). The middle infrared portion is measured with a traditional Michelson interferometer having two focal planes (600–1100 cm− 1, 1100–1400 cm− 1). Each focal plane is composed of a 1× 10 array of HgCdTe detectors, each detector having a 0.3-mrad FOV. CIRS observations will provide three-dimensional maps of temperature, gas composition, and aerosols/condensates of the atmospheres of Titan and Saturn with good vertical and horizontal resolution, from deep in their tropospheres to high in their mesospheres. CIRS’s ability to observe atmospheres in the limb-viewing mode (in addition to nadir) offers the opportunity to provide accurate and highly resolved vertical profiles of these atmospheric variables. The ability to observe with high-spectral resolution should facilitate the identification of new constituents. CIRS will also map the thermal and compositional properties of the surfaces of Saturn’s icy satellites. It will similarly map Saturn’s rings, characterizing their dynamical and spatial structure and constraining theories of their formation and evolution. The combination of broad spectral range, programmable spectral resolution, the small detector fields of view, and an orbiting spacecraft platform will allow CIRS to observe the Saturnian system in the thermal infrared at a level of detail not previously achieved.This revised version was published online in July 2005 with a corrected cover date.  相似文献   

16.
The Jupiter Energetic Particle Detector Instruments (JEDI) on the Juno Jupiter polar-orbiting, atmosphere-skimming, mission to Jupiter will coordinate with the several other space physics instruments on the Juno spacecraft to characterize and understand the space environment of Jupiter’s polar regions, and specifically to understand the generation of Jupiter’s powerful aurora. JEDI comprises 3 nearly-identical instruments and measures at minimum the energy, angle, and ion composition distributions of ions with energies from H:20 keV and O: 50 keV to >1 MeV, and the energy and angle distribution of electrons from <40 to >500 keV. Each JEDI instrument uses microchannel plates (MCP) and thin foils to measure the times of flight (TOF) of incoming ions and the pulse height associated with the interaction of ions with the foils, and it uses solid state detectors (SSD’s) to measure the total energy (E) of both the ions and the electrons. The MCP anodes and the SSD arrays are configured to determine the directions of arrivals of the incoming charged particles. The instruments also use fast triple coincidence and optimum shielding to suppress penetrating background radiation and incoming UV foreground. Here we describe the science objectives of JEDI, the science and measurement requirements, the challenges that the JEDI team had in meeting these requirements, the design and operation of the JEDI instruments, their calibrated performances, the JEDI inflight and ground operations, and the initial measurements of the JEDI instruments in interplanetary space following the Juno launch on 5 August 2011. Juno will begin its prime science operations, comprising 32 orbits with dimensions 1.1×40 RJ, in mid-2016.  相似文献   

17.
18.
内窥镜系列产品分医用、工业用两类。本文主要介绍工业用内窥镜系列产品构造原理和应用的情况以及国内与国外产品的差距。工业内窥镜技术应用 工业内窥镜应用于NDT(无损检测)工作,现在已受到工业制造和维修行业的欢迎。我国在20世纪70年代就将内窥镜作为NDT检测的重要仪器,用于民航飞机维修上;80年代中期,在压力容器、石化、电力、机械制造、军械等行业的NDT工作中也陆续使用了该产品。目前,我国使用该产品属于中等水平,发展潜力很大,有待进一步推广。 工业内窥镜技术具有独特的优势,它可以把人们的视距延长,并且…  相似文献   

19.
This paper is a review of the present knowledge on the structure of meteoroids.A summary of the evidence concerning the common occurrence of fragmentation among both photographic and radio meteors is given first. Then, an attempt is made to examine all the present observational, theoretical and laboratory data on the luminous and ionizing efficiencies of meteors, with the aim of establishing a mass scale. This allows the computation of the bulk density of meteoroids, which, on the average, turns out to be about 0.3 g/cm3.The paramount importance of progressive fragmentation, the behavior of abrupt-beginning meteors and the low density of nearly all meteoroids (even of those of relatively large sizes) support a porous and fragile structure for most of these particles. In turn, the crumbly structure and the cometary origin confirm Whipple's theory of comets and meteor production. A critical analysis of recent papers proposing different conclusions shows that the new theories always arrive at results which do not agree with well-established observational data.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号