首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
As local oscillator for a 337 m heterodyne system a stable HCN-laser was built with an output-power of 50 mW. As mixing device an open-structure mixer was used integrating the RF-coupling device, the mixer and the IF-transformer. As active mixer-element a special doped GaAs-diode with high cut-oif frequency was used. Comparison measurements with the 12th harmonic of a 4-mm klystron led to the evaluation of the minimal detectable power with approximately 10–15 WHz–1.  相似文献   

2.
Gamow was one of the pioneers who studied the possible variability of fundamental physical constants. Some versions of modern Grand Unification theories do predict such variability. The paper is concerned with three of the constants: the fine-structure constant , the ratio of the proton massm p to the electron massm e, and the ratio of the neutron massm n tom e. It is shown on the basis of the quasar spectra analysis, that all the three constants revealed no statistically significant variation over the last 90% of the life time of the Universe. At the 2 significance level, the following upper bounds are obtained for the epoch corresponding to the cosmological redshiftsz2–3: /<1.5×10–3, m p/m p<2×10–3, and m/m<3×10–4, where x is a possible deviation of a quantityx from its present value,m=m p+m n, and the nucleon masses are in units ofm e. (According to new observational data which became known most recently, m p/m p<2×10–4) In addition a possible anisotropy of the high-redshift fine splitting over the celestial sphere is checked. Within the relative statistical error 3 < 1% the values of turned out to be the same in various quadrants of the celestial sphere, which corresponds to their equality in causally disconnected areas. However, at the 2 level a tentative anisotropy of estimated / values is found in directions that approximately coincide with the direction of the relic microwave background anisotropy.The revealed constraints serve as criteria for selection of those theoretical models which predict variation of ,m p orm n with the cosmological time.  相似文献   

3.
In this paper we discuss theoretical expressions, determining the difference of Doppler shifts of various coherent radiowave frequencies emitted by a radiator moving in the ionosphere or interplanetary medium. The rotating Doppler effect (Faraday effect) caused by the Doppler shifts ±H of the ordinary and extraordinary waves is also considered. In a three-dimensional inhomogeneous ionosphere, stationary in time (N/t = 0), is determined in the general case, by an equation with three variables. The equation for proper depends only on the local value of the electron concentration N c around the radiator and on integral values, determining, by means of additional calculations, the angle of refraction or its components, the horizontal gradients of electron concentration N/x and N/y, and in some cases, the integral electron concentration 0 zcN dz. We describe the analysis of the measurements, made with the satellites Cosmos I, II and partially XI, assuming that N/t = N/y = 0, with a two variables equation. The expected errors are considered. The results coincide well for different points (Moscow, The Crimea, Sverdlovsk) and thus agree with the measurements of H and with height-frequency ionospheric characteristics. The curve giving electron concentration versus height N (z) in the outer ionosphere (above the maximum of F2), shows a new maximum higher than the main maximum of the ionosphere N MF2 at 120–140 km. At this maximum the value of N (z) is (0.9–0.95) N MF2. The new data on the large-scale horizontal inhomogeneities of the ionosphere, exceed the previous ones by about a factor 10. By means of the irregular variations of the spectrum W() of the inhomogenous formation is determined. Three unknown constant maxima with values 16 to 18 km, 28 to 32 km and 100 to 120 km are found. The spectrum W () mainly characterizes the local properties of the ionosphere along the orbit of the satellite.  相似文献   

4.
Collective radiation processes operating in laboratory and space plasmas are reviewed with an emphasis towards astrophysical applications. Particular stress is placed on the physics involved in the various processes rather than in the detailed derivation of the formulas. Radiation processes from stable non-thermal, weakly turbulent and strongly turbulent magnetized and unmagnetized plasmas are discussed. The general theoretical ideas involved in amplification processes such as stimulated scattering are presented along with their application to free electron and plasma lasers. Direct radio-emission of electromagnetic waves by linear instabilities driven by beams or velocity anisotropies are shown to be of relevance in space applications. Finally, as an example of the computational state of the art pertaining to plasma radiation, a study of the type III solar radio bursts is presented.

Frequently used Symbols

Latin Symbols teB 0 ambient magnetic field - B 1 perturbed magnetic field - c speed of light - E 1 perturbed electric field - H Heaviside function - I unit dyadic - k wavevector of radiation fields - K D inverse Debye length - m, M electron and ion mass - T e , T i electron and ion temperature - u relativistic velocity - V e , V i electron and ion thermal speeds - V P , V g wave phase and group velocities - W wave spectral energy density Greek Symbols relativistic factor - plasma dielectric tensor - L , T longitudinal and transverse components of in isotropic media (i.e., =kk L /k 2+(lkk/k 2) T ) - index of refraction - angle between k and B 0 - plasma dispersion tensor (i.e. =(c 2/ 2)(kkk 2 l)+) - determinant of - D Debye length - e electron cyclotron frequency - u upper hybrid frequency - wave frequency - e electron plasma frequency Proceedings of the NASA/JPL Workshop on the Physics of Planetary and Astrophysical Magnetospheres.National Research Council/Naval Research Laboratory Research Associate.  相似文献   

5.
Since the baryon-to-photon ratio 10 is in some doubt at present, we ignore the constraints on 10 from big bang nucleosynthesis (BBN) and fit the three key cosmological parameters (h, M, 10) to four other observational constraints: Hubble parameter (ho), age of the universe (to), cluster gas (baryon) fraction (fo fGh3/2), and effective shape parameter (o). We consider open and flat CDM models and flat CDM models, testing goodness of fit and drawing confidence regions by the 2 method. CDM models with M = 1 (SCDM models) are accepted only because we allow a large error on ho, permitting h < 0.5. Open CDM models are accepted only for M 0.4. CDM models give similar results. In all of these models, large 10 ( 6) is favored strongly over small 10 ( 2), supporting reports of low deuterium abundances on some QSO lines of sight, and suggesting that observational determinations of primordial 4He may be contaminated by systematic errors. Only if we drop the crucial o constraint are much lower values of M and 10 permitted.  相似文献   

6.
The current situation with the cosmological model and fundamental constants is briefly reviewed. Here, we concentrate on evolutionary effects of large-scale structure formation, in particular, the relationship with the quasar distribution and dynamics is discussed. We argue that groups of bright quasars with few or more than dozen of members within regions l LS(100–150)h –1 Mpc found atz<2 may belong to concentrations of young rich clusters of galaxies, and thus be distant Great Attractors like the local GA or the Shapley concentration. These early large-scale galactic structures (i) provide a natural way to bias the distribution of Abell clusters, and (ii) suggest that the spectrum of primordial density perturbations is nearly flat on scales encompassing both the cluster and GAs,l=k –1(10,100)h –1 Mpc: k 2 k 3 P(k) k , =1 –0.4 +0.6 , whereP(k) is the power spectrum of density perturbations.  相似文献   

7.
Magnetic reconnection provides an efficient conversion of the so-called free magnetic energy to kinetic and thermal energies of cosmic plasmas, hard electromagnetic radiation, and accelerated particles. This phenomenon was found in laboratory and space, but it is especially well studied in the solar atmosphere where it manifests itself as flares and flare-like events. We review the works devoted to the tearing instability — the inalienable part of the reconnection process — in current sheets which have, inside of them, a transverse (perpendicular to the sheet plain) component of the magnetic field and a longitudinal (parallel to the electric current) component of the field. Such non-neutral current sheets are well known as the energy sources for flare-like processes in the solar corona. In particular, quasi-steady high-temperature turbulent current sheets are the energy sources during the main or hot phase of solar flares. These sheets are stabilized with respect to the collisionless tearing instability by a small transverse component of magnetic fiel, normally existing in the reconnecting and reconnected magnetic fluxes. The collision tearing mode plays, however, an important and perhaps dominant role for non-neutral current sheets in solar flares. In the MHD approximation, the theory shows that the tearing instability can be completely stabilized by the transverse fieldB n if its value satisfies the conditionB n /BS –3/4 B is the reconnecting component of the magnetic field just near the current sheet,S is the magnetic Reynolds number for the sheet. In this case, stable current sheets become sources of temporal spatial oscillations and usual MHD waves. The application of the theory to the solar atmosphere shows that the effect of the transverse field explains high stability of high-temperature turbulent current sheets in the solar corona. The stable current sheets can be sources of radiation in the radio band. If the sheet is destabilized (atB n /BS –3/4) the compressibility of plasma leads to the arizing of the tearing instability in a long wave region, in which for an incompressible plasma the instability is absent. When a longitudinal magnetic field exists in the current sheet, the compressibility-induces instability can be dumped by the longitudinal field. These effects are significant in destabilization of reconnecting current sheets in solar flares: in particular, the instability with respect to disturbances comparable with the width of the sheet is determined by the effect of compressibility.  相似文献   

8.
If the path of the neutral line on the coronal source surface is expressible as a singlevalued function (colatitude vs longitude ), then Fourier analysis of ctn with respect to leads to a simple algorithm for realistically mapping the neutral line outward to model the heliospheric current sheet (HCS) at distancesr1 AU. To be compatible with MHD, the source surface used for this mapping should be prolate (aligned with dipole axis) rather than spherical. Orientation of the Sun's magnetic-dipole moment is indicated by them=1 Fourier amplitude (a 1 sin +b 1 cos ) of ctn on the source surface. Physical features (including the neutral line) on a prolate source surface intrinsically map to lower dipole latitudes atr1 AU in the heliosphere, and Ulysses observations of a unipolar field at latitudes beyond 30°S (when the neutral line on the source surface still reached 39°S) confirm the expected geometry.  相似文献   

9.
In the past several years, X-ray observations of the Sun made from rockets and satellites have demonstrated the existence of high temperature (20 × 106 – 100 × 106 K), low density plasmas associated with solar flare phenomena. In the hard X-ray range ( < 1 ), spectra of the flaring plasma have been obtained using proportional and scintillation counter detectors. It is possible from these data to determine the evolution of the hard X-ray flare spectrum as the burst progresses; and by assuming either a non-thermal or thermal (Maxwellian) electron distribution function, characteristic plasma parameters such as emission measure and temperature (for a thermal interpretation) can be determined. Thermal interpretations of hard X-ray data require temperatures of 100 × 106 K.In contrast, the soft X-ray flare spectrum (1 <<30 ) exhibits line emission from hydrogen-like and helium-like ions, e.g. Ne, Mg, Al, Si,... Fe, that indicates electron energies more characteristic of temperatures of 20 × 106 K. Furthermore, line intensity ratios obtained during the course of an event show that the flare plasma can only be described satisfactorily by assuming a source composed of several different temperature regions; and that the emission measures and temperatures of these regions appear to change as the flare evolves. Temperatures are determined from line ratios of hydrogen-like to helium-like ions for a number of different elements, e.g., S, Si, and Mg, and from the slope of the X-ray continuum which is assumed to be due to free-free and free-bound emission. There is no obvious indication in soft X-ray flare spectra of non-thermal processes, although accurate continuum measurements are difficult with the data obtained to date because of higher order diffraction effects due to the use of crystal spectrometers.Soft X-ray flare spectra also show satellite lines of the hydrogen-like and helium-like ions, notably the 1s 22s 2 S-1s2s2p 2 P transition of the lithium-like ion, and support the contention that in low density plasmas these lines are formed by dielectronic recombination to the helium-like ion. Also, series of allowed transitions of hydrogen-like and helium-like ions are strong, e.g., the Lyman series of S up to Lyman-, and ratios of the higher member lines to the Lyman- line can be compared with theoretical calculations of the relative line strengths obtained by assuming various processes of line formation.This review will discuss the X-ray spectrum of solar flares from 250 keV to 0.4 keV, but will be primarily concerned with the soft X-ray spectrum and the interpretation of emission lines and continuum features that lie in this spectral range.  相似文献   

10.
We consider the influence of the nonlinear stage of gravitational instability on the two-point correlation functions of gravitationally bound objects. Based on the theory of nonlinear gravitational contraction of a single density peak of dissipationless matter (Gurevich and Zybin, 1988a,b; 1990) we develop a method for calculating the two-point correlation functions of different objects of any mass. The method works good in the region of strong correlations and can be easily extended to calculate higher correlation functions. We show that the main contribution to the correlation function i in the region of strong correlations i 1 is made by pair systems located outside large clusters of objects. In this region the shape of i is determined only by the nonlinear dynamics of gravitational contraction of dissipationless matter and has the form i C , where 1.8 is a universal parameter.  相似文献   

11.
We propose that the appropriate instability to trigger a substorm is a tailward meander (in the equatorial plane) of the strong current filament that develops during the growth phase. From this single assumption follows the entire sequence of events for a substorm. The main particle acceleration mechanism in the plasma sheet is curvature drift with a dawn-dusk electric field, leading to the production of auroral arcs. Eventually the curvature becomes so high that the ions cannot negotiate the sharp turn at the field-reversal region, locally, at a certain time. The particle motion becomes chaotic, causing a local outward meander of the cross-tail current. An induction electric field is produced by Lenz's law, E ind=–A/t. An outward meander with B z>0 will cause E×B flow everywhere out from the disturbance; this reaction is a macroscopic instability which we designate the electromotive instability. The response of the plasma is through charge separation and a scalar potential, E es=–. Both types of electric fields have components parallel to B in a realistic magnetic field. For MHD theory to hold the net E must be small; this usually seems to happen (because MHD often does hold), but not always. Part of the response is the formation of field-aligned currents producing the well-known substorm current diversion. This is a direct result of a strong E ind (the cause) needed to overcome the mirror force of the current carriers; this enables charge separation to produce an opposing electrostatic field E es (the effect). Satellite data confirm the reality of a strong E in the plasma sheet by counter-streaming of electrons and ions, and by the inverse ion time dispersion, up to several 100 keV. The electron precipitation is associated with the westward traveling surge (WTS) and the ion with omega () bands, respectively. However, with zero curl, E es cannot modify the emf =Edl=–dM/dt of the inductive electric field E ind (a property of vector fields); the charge separation that produces a reduction of E must enhance the transverse component E . The new plasma flow becomes a switch for access to the free energy of the stressed magnetotail. On the tailward side the dusk-dawn electric field with EJ<0 will cause tailward motion of the plasma and a plasmoid may be created; it will move in the direction of least magnetic pressure, tailward. On the earthward side the enhanced dawn-dusk induction electric field with EJ>0 will cause injection into the inner plasma sheet, repeatedly observed at moderate energies of 1–50 keV. This same electric field near the emerging X-line will accelerate particles non-adiabatically to moderate energies. With high magnetic moments in a weak magnetic field, electrons (ions) can benefit from gradient and curvature drift to attain high energies (by the ratio of the magnetic field magnitude) in seconds (minutes).  相似文献   

12.
Quiet sun     
We underline the diagnostic strength of recent observations of the oscillating quiet Sun. While high quality (k, ) power spectra permit a better knowledge of the convection zone, long and continuous survey of oscillations of the integrated Sun provides an efficient sounding of the inner solar body.Proceedings of the Conference Solar Physics from Space, held at the Swiss Federal Institute of Technology Zurich (ETHZ), 11–14 November 1980.  相似文献   

13.
Thanks to remarkable new tools, such as the Goddard High Resolution Spectrograph (GHRS) on board the HST and the EUVE spectrometer on the interstellar side, and Ulysses particle detectors on the heliospheric side, it is possible now to begin to compare abundances and physical properties of the interstellar matter outside the heliosphere (from absorption features in the stellar spectra), and inside the heliosphere (from in situ or remote detection of the interstellar neutrals or their derivatives, the pick-up ions or the Anomalous Cosmic Rays detected by the two Voyager spacecraft).Ground-based and UV spectra of nearby stars show that the Sun is located between two volumes of gas of different heliocentric velocities V and temperatures T (see also Linsky et al, this issue). One of these clouds has the same velocity (V= 25.6 km s–1 from = 255 and =8) and temperature (6700 K) as the heliospheric helium of interstellar origin probed by Ulysses, and is certainly surrounding our star (and then the Local Interstellar Cloud or LIC). This Identification allows comparisons between interstellar constituents on both sides of the heliospheric interface.Ly-alpha background data (absorption cell and recent HST-GHRS spectra) suggest that the heliospheric neutral H velocity is smaller by 5–6 km s–1 than the local cloud velocity, and therefore that H is decelerated at its entrance into the heliosphere, in agreement with interaction models between the heliosphere and the ISM which include the coupling with the plasma. This is in favor of a non negligible electron density (at least 0.05 cm3). There are other indications of a rather large ionization of the ambient ISM, such as the ionization equilibrium of interstellar magnesium and of sodium. However the resulting range for the plasma density is still broad.The heliospheric neutral hydrogen number density (0.08–0.16 cm–3) is now less precisely determined than the helium density (0.013–0.017 cm–3, see Gloeckler, Witte et al, Mobius, this issue). The comparison between the neutral hydrogen to neutral helium ratios in the ISM (recent EUVE findings) and in the heliosphere, suggests that 15 to 70% of H does not enter the heliosphere. The comparison between the interstellar oxygen relative abundance (with respect to H and He) in the ISM and the heliospheric abundance deduced from pick-up ions is also in favor of some filtration, and thus of a non-negligible ionization.For a significant ISM plasma density, one expects a Hydrogen wall to be present as an intermediate state of the interstellar H around the interface between inside and outside. Since 1993, the two UVS instruments on board Voyager 1 and 2 indeed reveal clearly the existence of an additional Ly-alpha emission, probably due to a combination of light from the compressed H wall, and from a galactic source. On the other hand, the decelerated and heated neutral hydrogen of this H wall has recently been detected in absorption in the spectra of nearby stars (see Linsky, this issue).  相似文献   

14.
《Space Science Reviews》1989,49(1-2):111-124
The telescope Gamma-1 is designed to investigate cosmic gamma rays in the energy range from 50 MeV to 5000 MeV. The geometrical sensitive area of the telescope amounts to 1500 cm2, the angular resolution in each direction is equal to 1.2° at the energy 300 MeV and is about 20 when including a coded mask in the telescope, the energy resolution changes from 70% at 100 MeV to 35% at 550 MeV. The characteristics of the telescope and its systems have been determined by the Monte-Carlo method as well as by accelerator calibrations. Discrete sources at the intensity level of 10–7 quanta cm–2 s–1 may be recorded in a year of observations with the gamma-ray telescope Gamma-1 with a source location accuracy of 10 arc min.  相似文献   

15.
Recent studies suggest that when magnetohydrodynamic (MHD) turbulence is excited by stirring a plasma at large scales, the cascade of energy from large to small scales is anisotropic, in the sense that small-scale fluctuations satisfy the inequality k k , where k and k are, respectively, the components of a fluctuations wave vector and to the background magnetic field. Such anisotropic fluctuations are very inefficient at scattering cosmic rays. Results based on the quasilinear approximation for scattering of cosmic rays by anisotropic MHD turbulence are presented and explained. The important role played by molecular-cloud magnetic mirrors in confining and isotropizing cosmic rays when scattering is weak is also discussed.  相似文献   

16.
A short review is given on the history of the peculiar variable object Car and on a number of relevant references describing and discussing its physical characteristics and behaviour, based on different types of observational techniques. The star is known to be variable since the 17th century. The excessive mass loss to which it was subject during the 19th century is now visible as an ellipsoidal reflection nebula of 15 diameter: the so-called homunculus. The remainder of the paper is spent on different kinds of problems partly based on the results of a decade of photometric monitoring in the VBLUW photometric system of Walraven. Foreground reddening and reddening by dust in the homunculus are determined and amount to E(B - V) J = 0 50 and < 6, respectively. Scanning of the homunculus revealed an estimate for the photometric characteristics of the central object, which presumably consists of a massive hot star surrounded by a cooler gas envelope. The total luminosity is derived using fluxes of various sources in the wavelength region 0.15 < < 175 n resulting in M bol = - 12 3 ± 0 2. The total observed flux corrected for foreground extinction corresponds to a star with R 96 R if T eff 30 000 K. The mass may be near 150 M . The excess luminosity in 1843, when the star was presumably bolometrically at least 2 5 brighter than at present, may have been caused by envelope-energized pulsations when the star's luminosity was close to its Eddington limit. The temperature should then have been 50 000 K. The mass loss rate, during the excess luminosity phase lasting 30 yr, is estimated to amount to M 4 × 10-3 M yr-1. At present the mass loss may be M 10-4M yr-1. Since the homunculus is mainly built up from material expelled in the 30 yr interval (from 1830 to 1860), its total mass amounts to M hom 0.15 M . The historical observations of the colours of Car and a comparison with the characteristics of S Dor type stars, suggest that Car was subject to a number of S Dor type phases similar to those of P Cyg (in the 17th century), S Dor and others. A satisfactory explanation is found for the complete historical light curve. The decrease in light after the 1843 maximum by 9 m , presumably consists of a fading of the luminosity excess and the S Dor effect by 2 5 and 3m, respectively, and a 3 5 extinction by circumstellar dust. The small amplitude light variations which Car showed during the last decade, were studied with the aid of the variations of the Balmer jump. They are presumably caused by temperature variations of the central star.Percy and Welch (1983) (Publ. Astron. Soc. Pacific 95, 491) have observed P Cyg on a number of nights in 1982 and found for the photometric variations a time scale of 30 to 50 days and an amplitude of 0 . m 15.Based partly on observations collected at the ESO, La Silla, Chile.  相似文献   

17.
Baryons observed in Ly absorbers contribute to the density parameter 0 by bar 0.06 in close agreement with the value of 0.06 from primordial nucleosynthesis (H0=55 km s-1 Mpc-1, = 0 assumed throughout). A number of methods are known to measure 0 from density fluctuations; bound structures tend to yield lower values (m 0.2-0.4), field galaxies over large scales higher, but still undercritical values (m 0.6 ± 0.2). The best compromise value is 0 0.5, but the present methods are blind to diffusely distributed, exotic matter which still could make 0 = 1. A satisfactory solution of 0 (and ) will only come from a fundamental cosmological test (e.g. the Hubble diagram of [evolution-corrected] supernovae type Ia) in combination with the CMB fluctuation spectrum.  相似文献   

18.
It is commonly accepted that candidates for very high energy -ray sources are neutron stars, binary systems, black holes etc. Close binary systems containing a normal hot star and a neutron star (or a black hole) form an important class of very high energy -ray sources. Such systems are variable in any region of the electromagnetic spectrum and they enable us to study various stages of stellar evolution, accretion processes, mechanisms of particle acceleration, etc. Phenomena connected with this class of very high energy -ray sources are discussed. Particular emphasis has been placed on the TeV energy region.  相似文献   

19.
《Space Science Reviews》1989,49(1-2):125-138
The Gamma-1 telescope has been developed through a collaboration of scientists in the USSR and France in order to conduct -ray astronomical observations within the energy range from 50 to 5000 MeV. The major characteristics of the telescope were established by Monte-Carlo simulations and calibrations made with the aid of electron and tagged -ray beams produced by an accelerator, and these have been found to be as follows: the effective area for photons coming along the instrument's axis varies from about 50 cm2 at E = 50 MeV to approximately 230 cm2 at E 300 MeV; the angular resolution (half opening of the cone embracing 68% events) is equal to 2.7° at E = 100 MeV, and 1.8° at E = 300 MeV; the energy resolution (FWHM) varies from 70% to 35% as the energy of the detected photons increases from 100 to 550 MeV; the telescope's field-of-view at the half-sensitivity level is 300–450 square degrees depending upon the spectrum of the detected radiation, and the event selection logic. Proceeding from the thus obtained characteristics it is demonstrated that a point source producing a photon flux J (E 100 MeV) = 3 × 10-7 cm-2 s-1, can be detected with a 5 significance by observing it during 106 s at the level of the Cygnus background, and a source having intensity J (E 100 MeV) = 10-6 cm-2 s-1 can be detected to within a mean square positional accuracy of about 15.  相似文献   

20.
The emission mechanisms for solar radio bursts   总被引:1,自引:0,他引:1  
Emission mechanisms for meter- solar radio bursts are reviewed with emphasis on fundamental plasma emission.The standard version of fundamental plasma emission is due to scattering of Langmuir waves into transverse waves by thermal ions. It may be treated semi-quantitatively by analogy with Thomson scattering provided induced scattering is unimportant. A physical interpretation of induced scattering is given and used to derive the transfer equation in a semi-quantitative way. Solutions of the transfer equation are presented and it is emphasized that standard fundamental emission with brightness temperatures 109 K can be explained only under seemingly exceptional circumstances.Two alternative fundamental emission mechanisms are discussed: coalescence of Langmuir waves with low-frequency waves and direct conversion due to a density inhomogeneity. It is pointed out for the first time that the coalescence process (actually a related decay process) can lead to amplified transverse waves. The coalescence process saturates when the effective temperature T t of the transverse waves reaches the effective temperature T l of the Langmuir waves. This saturation occurs provided the energy density in the low-frequency waves exceeds a specific value which is about 10-9 of the thermal energy density for emission from the corona at 100 MHz. It is suggested that direct emission has been dismissed as a possible alternative without adequate justification.Second harmonic plasma emission is discussed and compared with fundamental plasma emission. It also saturates at T t T l , and this saturation should occur in the corona roughly for T l 1015 K. If fundamental plasma emission is attributed to coalescence with low-frequency waves, then for T l 1015 K the brightness temperatures at the two harmonics should be equal and equal to T l . This offers a natural explanation for the approximate equality of the two brightness temperature often found in type II and type III bursts.Analytic treatments of gyro-synchrotron emission are reviewed. The application of the mechanism to moving type IV bursts is discussed in view of bursts with 1010 K at 43 MHz.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号