首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We report here on preliminary results of a systematic study of fast temporal fluctuations in impulsive and extended solar X-ray bursts observed by PHEBUS at energies around 100 keV. Subsecond timescales are quite common in the impulsive events and are not observed in extended ones.  相似文献   

2.
The advent of far infrared arrays will change fundamentally the means of analyzing observations in this spectral region. Sources much fainter than traditional confusion limits will be extracted from images by using computer algorithms similar to CLEAN or DAOPHOT. We have conducted numerical experiments to evaluate these techniques and show that they will permit long integrations (10,000 sec at 60 m, 200 sec at 100 m) to achieve nearly photon-background-limited performance and hence very deep detection limits. The dominant noise sources—photon noise, confusion by distant galaxies, and confusion by IR cirrus — scale with nearly the same power of the telescope aperture. As a result, the integration times required to reach confusion limits are nearly aperture-independent.  相似文献   

3.
Since the baryon-to-photon ratio 10 is in some doubt at present, we ignore the constraints on 10 from big bang nucleosynthesis (BBN) and fit the three key cosmological parameters (h, M, 10) to four other observational constraints: Hubble parameter (ho), age of the universe (to), cluster gas (baryon) fraction (fo fGh3/2), and effective shape parameter (o). We consider open and flat CDM models and flat CDM models, testing goodness of fit and drawing confidence regions by the 2 method. CDM models with M = 1 (SCDM models) are accepted only because we allow a large error on ho, permitting h < 0.5. Open CDM models are accepted only for M 0.4. CDM models give similar results. In all of these models, large 10 ( 6) is favored strongly over small 10 ( 2), supporting reports of low deuterium abundances on some QSO lines of sight, and suggesting that observational determinations of primordial 4He may be contaminated by systematic errors. Only if we drop the crucial o constraint are much lower values of M and 10 permitted.  相似文献   

4.
In the past several years, X-ray observations of the Sun made from rockets and satellites have demonstrated the existence of high temperature (20 × 106 – 100 × 106 K), low density plasmas associated with solar flare phenomena. In the hard X-ray range ( < 1 ), spectra of the flaring plasma have been obtained using proportional and scintillation counter detectors. It is possible from these data to determine the evolution of the hard X-ray flare spectrum as the burst progresses; and by assuming either a non-thermal or thermal (Maxwellian) electron distribution function, characteristic plasma parameters such as emission measure and temperature (for a thermal interpretation) can be determined. Thermal interpretations of hard X-ray data require temperatures of 100 × 106 K.In contrast, the soft X-ray flare spectrum (1 <<30 ) exhibits line emission from hydrogen-like and helium-like ions, e.g. Ne, Mg, Al, Si,... Fe, that indicates electron energies more characteristic of temperatures of 20 × 106 K. Furthermore, line intensity ratios obtained during the course of an event show that the flare plasma can only be described satisfactorily by assuming a source composed of several different temperature regions; and that the emission measures and temperatures of these regions appear to change as the flare evolves. Temperatures are determined from line ratios of hydrogen-like to helium-like ions for a number of different elements, e.g., S, Si, and Mg, and from the slope of the X-ray continuum which is assumed to be due to free-free and free-bound emission. There is no obvious indication in soft X-ray flare spectra of non-thermal processes, although accurate continuum measurements are difficult with the data obtained to date because of higher order diffraction effects due to the use of crystal spectrometers.Soft X-ray flare spectra also show satellite lines of the hydrogen-like and helium-like ions, notably the 1s 22s 2 S-1s2s2p 2 P transition of the lithium-like ion, and support the contention that in low density plasmas these lines are formed by dielectronic recombination to the helium-like ion. Also, series of allowed transitions of hydrogen-like and helium-like ions are strong, e.g., the Lyman series of S up to Lyman-, and ratios of the higher member lines to the Lyman- line can be compared with theoretical calculations of the relative line strengths obtained by assuming various processes of line formation.This review will discuss the X-ray spectrum of solar flares from 250 keV to 0.4 keV, but will be primarily concerned with the soft X-ray spectrum and the interpretation of emission lines and continuum features that lie in this spectral range.  相似文献   

5.
The interaction between network magnetic fields and emerging intranetwork fields may lead to magnetic reconnection and microflares, which generate fast shocks with an Alfvén Mach number M A<2. Protons and less abundant ions in the solar corona are then heated and accelerated by fast shocks. Our study of shock heating shows that (a) the nearly nondeflection of ion motion across the shock ramp leads to a large perpendicular thermal velocity (v th), which is an increasing function of the mass/charge ratio; (b) the heating by subcritical shocks with 1.1 MA 1.5 leads to a large temperature anisotropy with T/T 50 for O5+ ions and a mild anisotropy with T/T 1.2 for protons; (c) the large perpendicular thermal velocity of He++ and O5+ ions can be converted to the radial outflow velocity (u) in the divergent coronal field lines; and (d) the heating and acceleration by shocks with 1.1 MA 1.5 can lead to u(O5+) v th(O5+) 460 km s–1 for O5+ ions, u(He++) v th(He++) 360 km s–1 for He++ ions, and u(H+) v th(H+) 240 km s–1 for protons at r=3–4 R . Our results can explain recent SOHO observations of the heating and acceleration of protons and heavier ions in the solar corona.  相似文献   

6.
Closing address     
Impressions from the workshop are summarized. Difficulties within the present observational and theoretical context are outlined and directions for fruitful future work are indicated. The workshop subtitle, the interface between MHD and plasma physics, still appears to be a goal for the future, though some encouraging results have been reported at this workshop.  相似文献   

7.
Solar Corona Sounders (SCS), a mission designed to utilize the radio occultation technique for investigations of the inner heliosphere, was submitted to ESA in response to a call for new mission concepts. The SCS platforms are two small multifrequency transmitters placed at the anti-Earth position (superior solar conjunction) for continuous radio sounding of the solar corona. Appropriately specifying certain orbital elements for the heliocentric trajectories of the spacecraft, their radially-aligned positions as seen from Earth appear to circle the solar disk over the course of a year. The two radio sources would be most effectively positioned at apparent solar distances inside and outside the nominal solar wind critical point, respectively, e.g., at 3 R and 10 R. Radio parameters to be measured using the linearly polarized, coherent dual-frequency links to ground include the group time delay, signal amplitude, the phase (Doppler) shift, linewidth, and Faraday rotation. The link frequencies for coronal sounding observations this close to the Sun could be the interplanetary standards at S-band (2.3 GHz) and X-band (8.4 GHz). These measurements are used to derive both mean values and fluctuation spectra of such coronal parameters as the electron density, the solar wind velocity, and the magnetic field. The geometry afforded by the two radio ray paths from the SCS transmitters would provide unprecedented observations of the radial evolution of dynamic coronal events such as coronal mass ejections.  相似文献   

8.
Stellar flares     
Radio and X-ray observations of stellar flares provide the most direct probes of energy relaase particle acceleration, and energy transport on stars other than the Sun. In this review, the observational basis for our understanding of the flare phenomenon on other stars is briefly described and outstanding interpretive and theoretical issues are discussed. I shall confine my attention to objects which are solar-like, to the extent that they possess deep convective envelopes and display activity which is presumed to be magnetic in origin. These include pre-main sequence objects, classical flare stars, and close binaries. Future directions are briefly discussed.  相似文献   

9.
The purpose of this work is to study the various -ray-production mechanisms in solar flares and to calculate the flux, the spectrum, and the decay curves of radiation. Using the continuity equation and taking into account the energy losses for solar-flare-accelerated particles, we obtain the time-dependent particle distribution and thus the time behavior of the resulting rays. The important processes for producing rays in solar flares are found to be nonthermal electron bremsstrahlung, decay of neutral mesons, positron annihilation, neutron capture, and decay of excited nuclei. The results are applied to several known solar flares. For a large flare such as the class 3+ on February 23, 1956, continuous rays with energies up to 100 MeV from electron bremsstrahlung and neutral meson decays are observable at the orbit of the Earth by existing -ray detectors. Line rays from positron annihilation (0.51 MeV), neutron capture (2.23 MeV), and deexcitation of excited nuclei O16 (6.14 and 7.12 MeV) and C12 (4.43 MeV) are particularly strong and well above the continuous -ray background due to electron bremsstrahlung. These lines can be detected at the Earth.NASA-NRC Resident Research Associate.  相似文献   

10.
Recent studies suggest that when magnetohydrodynamic (MHD) turbulence is excited by stirring a plasma at large scales, the cascade of energy from large to small scales is anisotropic, in the sense that small-scale fluctuations satisfy the inequality k k , where k and k are, respectively, the components of a fluctuations wave vector and to the background magnetic field. Such anisotropic fluctuations are very inefficient at scattering cosmic rays. Results based on the quasilinear approximation for scattering of cosmic rays by anisotropic MHD turbulence are presented and explained. The important role played by molecular-cloud magnetic mirrors in confining and isotropizing cosmic rays when scattering is weak is also discussed.  相似文献   

11.
The object H0323+022 (Doxsey et al. 1983) has been shown to be a BL Lac object by virtue of a diversity of observational characteristics at radio, optical, and x-ray wavelengths, in agreement with the conclusion of Margon and Jacoby (1984). Multi-frequency coordinated observations of this highly variable object with EXOSAT in September 1984 found it to be in a faint quiescent state (1/3; Jy at 5 keV and V=16.55). Preliminary results from the latter observations are presented.  相似文献   

12.
Some properties of the outer ionosphere and its boundary region are discussed on the basis of recent experimental results.The analysis of the new data has shown that the outer ionosphere, a plasma above the ionospheric main maximum, extends to a distance of 3 to 3.5 earth radii from the earth's surface, that is, up to the region of the so-called knee, detected and observed by means of whistlers. During periods of relatively weak magnetic storms, from time to time the electron concentration at this ionospheric boundary jumps downward by factors of 10 to 100, over a height range of only a few hundred kilometres. The inflow of charged particles into the ionosphere apparently takes place through the boundary region. Sometimes these particles are swept into it from the overlying regions.There is a great number of names for the outer ionosphere. Some of these terms, for instance the geocorona, are not at all applicable to the outer ionosphere.From the new experimental results it can be inferred that in a great part of the outer ionosphere there is no quasineutrality, that there are rather strong electric fields, and that the Maxwell ion distribution law of particle velocities breaks down. Therefore, to analyze the ionization balance one should know the particles' velocity distribution functions. Otherwise it would hardly be possible to solve the problem of the formation of the ionosphere.It is shown that within the limits of uncertainty all experimental results are in good agreement and produce a single, comprehensive picture of the structure of the outer ionosphere. Only some data, deduced from measurements of particle streams by means of ion traps, are an exception. They contradict the numerous experimental results. This discrepancy is in particular due to the difficulties of determining the plasma concentration from current density measurements.Some methods are discussed briefly. For instance, the analysis of low-frequency waves, in particular the so-called whistler and the low-frequency plasma radiation, represents a physically adequate and fruitful method for investigating the outer ionosphere.For a theoretical analysis of the above-mentioned data, it is in some cases required to take into account the effect of kinetic corrections to the refraction coefficient, of cyclotron and erenkov attenuation and radiation, etc. Over the next few years this method will come to play a great part in the exploration of the outer ionosphere, interplanetary space, and planets.Measurements of the energy spectra of incoherent back scattering of radio waves on the electron fluctuations will make another very interesting source for studying the outer ionosphere. This method is based on the interaction phenomena of radio waves with the plasma. Therefore, the scattering spectra are functions of the oscillating properties of the plasma. However, these data should be subjected to a thorough theoretical treatment on the basis of a complete theory of scattering.Up till now a sufficiently complete probe theory has not been evolved due to essential theoretical difficulties. Often this does not allow one to interpret adequately the results of measurements and considerably limits the possibilities of these methods.  相似文献   

13.
For five years, theEdison program has had the goal of developing new designs for infrared space observatories which will break the cost curve by permitting more capable missions at lower cost. Most notably, this has produced a series of models for purely radiative and radiative/mechanical (hybrid) cooling which do not use cryogens and optical designs which are not constrained by the coolant tanks. Purely radiatively-cooled models achieve equilibrium temperatures as low as about 20 K at a distance of 1 AU from the sun. More advancedEdison designs include mechanical cooling systems attached to the telescope assembly which lower the optical system temperature to 5 K or less. Via these designs, near-cryogenic temperatures appear achievable without the limitations of cryogenic cooling. OneEdison model has been proposed to the European Space Agency as the next generation infrared space observatory and is presently under consideration as a candidate ESA Cornerstone mission. The basic design is also the starting point for elements of future infrared space interferometers.  相似文献   

14.
We review aspects of anomalous cosmic rays (ACRs) that bear on the solar modulation of energetic particles in the heliosphere. We show that the latitudinal and radial gradients of these particles exhibit a 22-year periodicity in concert with the reversal of the Sun's magnetic field. The power-law index of the low energy portion of the energy spectrum of ACRs at the shock in 1996 appears to be -1.3, suggesting that the strength of the solar wind termination shock at the helioequatorial plane is relatively weak, with s 2.8. The rigidity dependence of the perpendicular interplanetary mean free path in the outer heliosphere for particles with rigidities between 0.2 and 0.7 GV varies approximately as R2, where R is particle rigidity. There is evidence that ACR oxygen is primarily multiply charged above 20 MeV/nuc and primarily singly-charged below 16 MeV/nuc. The location of the termination shock was at 65 AU in 1987 and 85 AU in 1994.  相似文献   

15.
Thanks to remarkable new tools, such as the Goddard High Resolution Spectrograph (GHRS) on board the HST and the EUVE spectrometer on the interstellar side, and Ulysses particle detectors on the heliospheric side, it is possible now to begin to compare abundances and physical properties of the interstellar matter outside the heliosphere (from absorption features in the stellar spectra), and inside the heliosphere (from in situ or remote detection of the interstellar neutrals or their derivatives, the pick-up ions or the Anomalous Cosmic Rays detected by the two Voyager spacecraft).Ground-based and UV spectra of nearby stars show that the Sun is located between two volumes of gas of different heliocentric velocities V and temperatures T (see also Linsky et al, this issue). One of these clouds has the same velocity (V= 25.6 km s–1 from = 255 and =8) and temperature (6700 K) as the heliospheric helium of interstellar origin probed by Ulysses, and is certainly surrounding our star (and then the Local Interstellar Cloud or LIC). This Identification allows comparisons between interstellar constituents on both sides of the heliospheric interface.Ly-alpha background data (absorption cell and recent HST-GHRS spectra) suggest that the heliospheric neutral H velocity is smaller by 5–6 km s–1 than the local cloud velocity, and therefore that H is decelerated at its entrance into the heliosphere, in agreement with interaction models between the heliosphere and the ISM which include the coupling with the plasma. This is in favor of a non negligible electron density (at least 0.05 cm3). There are other indications of a rather large ionization of the ambient ISM, such as the ionization equilibrium of interstellar magnesium and of sodium. However the resulting range for the plasma density is still broad.The heliospheric neutral hydrogen number density (0.08–0.16 cm–3) is now less precisely determined than the helium density (0.013–0.017 cm–3, see Gloeckler, Witte et al, Mobius, this issue). The comparison between the neutral hydrogen to neutral helium ratios in the ISM (recent EUVE findings) and in the heliosphere, suggests that 15 to 70% of H does not enter the heliosphere. The comparison between the interstellar oxygen relative abundance (with respect to H and He) in the ISM and the heliospheric abundance deduced from pick-up ions is also in favor of some filtration, and thus of a non-negligible ionization.For a significant ISM plasma density, one expects a Hydrogen wall to be present as an intermediate state of the interstellar H around the interface between inside and outside. Since 1993, the two UVS instruments on board Voyager 1 and 2 indeed reveal clearly the existence of an additional Ly-alpha emission, probably due to a combination of light from the compressed H wall, and from a galactic source. On the other hand, the decelerated and heated neutral hydrogen of this H wall has recently been detected in absorption in the spectra of nearby stars (see Linsky, this issue).  相似文献   

16.
Høg  E.  Pagel  B.E.J.  Portinari  L.  Thejll  P.A.  Macdonald  J.  Girardi  L. 《Space Science Reviews》1998,84(1-2):115-126
The primordial helium abundance YP is important for cosmology and the ratio Y/Z of the changes relative to primordial abundances constrains models of stellar evolution. While the most accurate estimates of YP come from emission lines in extragalactic H II regions, they involve an extrapolation to zero metallicity which itself is closely tied up with the slope Y/Z. Recently certain systematic effects have come to light in this exercise which make it useful to have an independent estimate of Y/Z from fine structure in the main sequence of nearby stars. We derive such an estimate from Hipparcos data for stars with Z Z and find values between 2 and 3, which are consistent with stellar models, but still have a large uncertainty.  相似文献   

17.
We review the possible evolutionary paths from massive stars to explosive endpoints as various types of supernovae associated with Population I and hence with massive stars: Type II-P, Type II-L, Type Ib, Type Ic, and the hybrid events SN 1987K and SN 1993J. We identify SN 1954A as another hybrid event from the evidence for both H and He in its spectrum with velocities nearly the same as SN 1983J. Evidence for ejected56Ni mass of 0.07 M suggests that SN II-P underwent standard iron core collapse, not collapse of an O–Ne–Mg core nor thermonuclear explosion of a C–O core. Most SN II-P presumably arise in single stars or wide binaries of 10–20 M. There may be indirect evidence for duplicity in some cases in the form of strong Ba II lines, such as characterized SN 1987A. SN II-L are recognizably distinct from typical SN II-P and must undergo a significantly different evolution. Despite indications that SN II-L have small envelopes that may be helium enriched, they are also distinct from events like SN 1993J that must have yet again a different evolution. The SN II-L that share a common Luminosity seem to have ejected a small nickel mass and hence may come from stars with O–Ne–Mg cores. The amount of nickel ejected by the exceptionally bright events, SN 1980K and SN 1979C, remains controversial. SN Ib require the complete loss of the H envelope, either to a binary companion or to a wind. The few identified have relatively large ejecta masses. It is not clear what evolutionary processes distinguish SN Ib's evolving in binary systems from hybrid events that retain some H in the envelope. SN Ic events are both H and He deficient. Binary models that can account for transfer of an extended helium envelope from low mass helium cores, 2 to 4 M, imply C–O core masses that are roughly consistent with that deduced from the ejecta mass plus a neutron star, 2 to 3 M. It is possible that the hybrid events are the result of Roche lobe overflow and that the pure events, SN Ib or SN Ic, result from common envelope evolution.  相似文献   

18.
SummaryA. Spectral features The ability of the various theories to explain the three main spectral features at 1/4 keV, 60 keV and 1 MeV is summarized in Tables II and III.Clearly, confirmation of the reality of these features, especially the soft X-ray and -ray excesses, is one of the key elements in enabling us to decide between the competing theoretical interpretations.B. Energy requirements None of the proposed interpretations are easily explained in terms of the available energy in cosmic rays (except perhaps the Seyfert galaxy proposal, and this runs into difficulties). It seems that one either has to regard normal galaxies at the present epoch as prolific sources of cosmic rays ( 1060 erg/galaxy in protons), as is required by the Brecher-Morrison model, or to argue that at early stages in their evolution far more energy is available than at present. One ends up with much the same energy requirement in this approach.One could conceivably identify such an early phase with the radio galaxy or QSO phenomena: in any event, cosmological evolution plays a major role. Cosmology does ease the energy requirements, but only for the inefficient mechanisms, such as nonthermal bremsstrahlung or ° -production.It seems that one still needs the metagalactic cosmic ray flux to be 10-2 of the galactic flux in the diffuse inverse Compton models, and 10-2–10-4 in the nonthermal bremsstrahlung models.Faced with problems of energetics, one is tempted to turn to the most energetic objects in the Universe, namely Seyfert nuclei and QSO's, to provide the basic energy source, whether directly or indirectly, for the diffuse X-ray background. A direct connection could be more readily investigated when X-ray observations are available of more extra-galactic sources.C. Angular variations Another approach, complementary to that of looking for remote discrete sources, is to seek angular fluctuations, or limits on such fluctuations in the diffuse X-ray background.The best results presently available are those from the X-ray experiment on board OSO 3. Schwartz (1970) reports a limit of I/Ifour percent on small-scale (10°) fluctuations over 10–100 keV over about one-quarter of the sky. If one assumes a astrophysics, namely the origin of cosmic rays, is intimately linked to the origin of the X-ray background.It may well be that no single mechanism suffices to account for the entire spectrum of isotropic X- and -radiation. Nature is sufficiently perverse for there to be a reasonable probability that several different processes are contributing, and considerable ingenuity will be required to ascertain which mechanism, if any, is assigned the dominant role in a given spectral region.This review is based on an invited paper presented at the joint meeting of the A. A. S. Division of High Energy Astrophysics, and the A. P. S. Division of Cosmic Physics, Washington, D. C., 28 April–1 May, 1970  相似文献   

19.
X-ray spectra of the BL Lac type object Mkn 421 and several Seyfert type 1 galaxies; IIIZw2, MCG8-11-11 and NGC 4151, have been obtained using the Leicester University instrument on board the Ariel-6 satellite. The Mkn 421 spectrum is best represented by two powerlaw components, the soft component having 3.4 whilst the hard flux has 1.0. In MCG8-11-11 there is clear evidence for spectral variability between our observation in late 1979 and that of HEAO-1/A2 in 1977. The Ariel-6 spectrum of MCG8-11-11 can be fitted by a powerlaw of index 2.1 together with an iron line at 6.2 keV with an equivalent width of 1.6 keV. The first X-ray spectrum of IIIZw2 is also presented, fitting with a powerlaw we find an index of 1.7. With the exception of NGC 4151 there is no evidence for a significant column of cool material along the line of sight.  相似文献   

20.
《Space Science Reviews》1989,49(1-2):125-138
The Gamma-1 telescope has been developed through a collaboration of scientists in the USSR and France in order to conduct -ray astronomical observations within the energy range from 50 to 5000 MeV. The major characteristics of the telescope were established by Monte-Carlo simulations and calibrations made with the aid of electron and tagged -ray beams produced by an accelerator, and these have been found to be as follows: the effective area for photons coming along the instrument's axis varies from about 50 cm2 at E = 50 MeV to approximately 230 cm2 at E 300 MeV; the angular resolution (half opening of the cone embracing 68% events) is equal to 2.7° at E = 100 MeV, and 1.8° at E = 300 MeV; the energy resolution (FWHM) varies from 70% to 35% as the energy of the detected photons increases from 100 to 550 MeV; the telescope's field-of-view at the half-sensitivity level is 300–450 square degrees depending upon the spectrum of the detected radiation, and the event selection logic. Proceeding from the thus obtained characteristics it is demonstrated that a point source producing a photon flux J (E 100 MeV) = 3 × 10-7 cm-2 s-1, can be detected with a 5 significance by observing it during 106 s at the level of the Cygnus background, and a source having intensity J (E 100 MeV) = 10-6 cm-2 s-1 can be detected to within a mean square positional accuracy of about 15.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号