首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 873 毫秒
1.
This paper reviews the first results of satellite experiments to measure magnetospheric convection electric fields using the double-probe technique.The earliest successful measurements were made with the low-altitude (680–2530 km) polar orbiting Injun-5 spacecraft (launched August, 1968). The Injun-5 data are discussed in detail. The Injun-5 results are compared with the initial findings of the electric field experiment on the polar orbiting OGO-6 satellite (400–1100 km, launched June, 1969).In addition to electric fields, the Injun-5 spacecraft also measures electric antenna impedance and thermal and energetic charged particle densities. Knowledge of these parameters makes possible a detailed investigation of the operation of the electric antenna system. We report on this investigation and discuss errors attributed to sunlight shadows on the probes, wake effects, and other factors. The Injun-5 experiment can generally determine electric fields to an accuracy of about ±30 mV m-1, and under favorable conditions, accuracies of ±10 mV m-1 can be obtained.Reversals in the electric field at auroral zone latitudes are the most significant convection electric field effect discovered in the Injun-5 data. Electric field magnitudes of typically 30 mV m-1, and sometimes 100 mV m-1, are associated with reversals. Electric field reversals occur on 36% of auroral zone traversals, at about 70° to 80° invariant latitude, at all local times, and in both hemispheres. The latitude of a reversal often changes markedly on time scales less than 2 h. Electric potentials of greater than 40 keV are associated with these high latitude electric fields. Reversals occur at the boundary of measurable intensities of >45 keV electrons and are coincident with inverted V type low energy electron precipitation events. In almost all cases the E×B/B 2 plasma convection velocities associated with reversals are directed east or west, with anti-sunward components at higher latitudes and sunward components at lower latitudes. Maximum convection velocities are typically 1.5 km s-1 and ordinarily occur at the auroral zone near the reversal.Two extreme (and many intermediate) configurations of anti-sunward plasma convection have been observed to occur on the high latitude side of electric field reversals: (1) Ordinarily, >0.75 kms-1 convection is limited to narrow (5° INV wide) zones adjacent to the reversal. (2) For 14% of reversals >0.75 km s-1 anti-sunward convection has been observed across the entire polar cap along the trajectory of the Injun-5 spacecraft. A summary pattern of >0.75 km s-1 polar thermal plasma convection is presented.Electric field measurements from the OGO-6 satellite have substantiated many of the initial Injun-5 observations with improved accuracy and sensitivity. The OGO-6 detector revealed the persistent occurrence of anti-sunward convection across the polar cap region at velocities (<0.75 km s-1) not generally detectable with the Injun-5 experiment. The OGO-6 observations also provided information indicating that the location of the electric field reversal shifts equatorward during periods of increased magnetic activity.The implications of the electric field measurements for magnetosphericand auroral structure are summarized, and a list of specific recommendations for improving future experiments is presented.  相似文献   

2.
The high spatial-temporal resolution of instrumentation on the polar-orbiting S3-2 satellite has allowed a wide variety of measurements of the electrodynamic characteristics of both large- and small-scale structures at high latitudes. Analyses of large scale features observed by S3-2 have shown that: (i) The IMF B ydependence of polar cap convection, first observed in June 1969 by OGO-6 persists in other seasons. During periods of northward IMF B zextensive regions of sunward convection may be found in the sunlit polar cap. (ii) In the dawn and dusk MLT sectors >90% of the region 1 currents lie equatorward of the convection reversal line. Potentials across the ionospheric projection of the low-latitude boundary layer are typically a few kV. (iii) The location of extra field-aligned currents, near the dayside cusp and poleward of the region 1 current sheet is dependent on the IMF B ycomponent. (iv) Simultaneous observations by TRIAD and S3-2 show that sheets of field-aligned current extend uniformly for several hours in MLT, but may have an altitude dependence in the 1000–8000 km range. (v) During magnetic storms ionospheric irregularities occur in regions of poleward density gradients and downward field-aligned currents near the equatorward boundary of diffuse auroral precipitation. In the winter polar cap, density irregularities were also found in regions of highly structured electric fields and soft electron precipitation. (vi) During an intense magnetic storm the auroral zone height-integrated Pederson conductivity was calculated to be in the range 10–30 mho and downcoming energetic electron fluxes accounted for between 50% and 70% of the upward Birkeland currents.Analysis of small-scale structures (latitudinal width < 1°), observed by S3-2, have shown that: (i) Intense meridional electric fields (50–250 mV m-1) generated by charge separation near the inner edge of the plasma sheet drive intense subauroral convection and are associated with field-aligned currents, on the order of 1–2 A m-2. (ii) Case studies of discrete arcs in the auroral oval have shown that arcs are associated with pairs of small-scale, field-aligned currents embedded in the large-scale region 1/region 2 field-aligned current sheets. The maximum observed field-aligned current was an upward current of 135 A m-2, confined to a latitudinal width of 2km and carried by field-aligned accelerated electrons. Return (downward) currents associated with arcs are limited to intensities of 10–15 A m-2. At this limit the ionospheric plasma becomes marginally stable to the onset of ion-cyclotron turbulence. Two instances of plasma vortices, characteristic of auroral curls, have been observed in the region between the paired current sheets. (iii) Sun-aligned arcs in the polar cap are found in a region of negative electric field divergence, embedded in an irregular electric field pattern. The electrons producing the arcs have a temperature of 200 eV and have been accelerated through potential drops of 1 kV along the magnetic field. Return currents may appear on both sides of polar-cap arcs.  相似文献   

3.
Ergun  R.E.  Carlson  C.W.  Mozer  F.S.  Delory  G.T.  Temerin  M.  McFadden  J.P.  Pankow  D.  Abiad  R.  Harvey  P.  Wilkes  R.  Primbsch  H.  Elphic  R.  Strangeway  R.  Pfaff  R.  Cattell  C.A. 《Space Science Reviews》2001,98(1-2):67-91
We describe the electric field sensors and electric and magnetic field signal processing on the FAST (Fast Auroral SnapshoT) satellite. The FAST satellite was designed to make high time resolution observations of particles and electromagnetic fields in the auroral zone to study small-scale plasma interactions in the auroral acceleration region. The DC and AC electric fields are measured with three-axis dipole antennas with 56 m, 8 m, and 5 m baselines. A three-axis flux-gate magnetometer measures the DC magnetic field and a three-axis search coil measures the AC magnetic field. A central signal processing system receives all signals from the electric and magnetic field sensors. Spectral coverage is from DC to 4 MHz. There are several types of processed data. Survey data are continuous over the auroral zone and have full-orbit coverage for fluxgate magnetometer data. Burst data include a few minutes of a selected region of the auroral zone at the highest time resolution. A subset of the burst data, high speed burst memory data, are waveform data at 2×106 sample s–1. Electric field and magnetic field data are primarily waveforms and power spectral density as a function of frequency and time. There are also various types of focused data processing, including cross-spectral analysis, fine-frequency plasma wave tracking, high-frequency polarity measurement, and wave-particle correlations.  相似文献   

4.
The auroral zone ionosphere is coupled to the outer magnetosphere by means of field-aligned currents. Parallel electric fields associated with these currents are now widely accepted to be responsible for the acceleration of auroral particles. This paper will review the theoretical concepts and models describing this coupling. The dynamics of auroral zone particles will be described, beginning with the adiabatic motions of particles in the converging geomagnetic field in the presence of parallel potential drops and then considering the modifications to these adiabatic trajectories due to wave-particle interactions. The formation of parallel electric fields can be viewed both from microscopic and macroscopic viewpoints. The presence of a current carrying plasma can give rise to plasma instabilities which in a weakly turbulent situation can affect the particle motions, giving rise to an effective resistivity in the plasma. Recent satellite observations, however, indicate that the parallel electric field is organized into discrete potential jumps, known as double layers. From a macroscopic viewpoint, the response of the particles to a parallel potential drop leads to an approximately linear relationship between the current density and the potential drop.The currents flowing in the auroral circuit must close in the ionosphere. To a first approximation, the ionospheric conductivity can be considered to be constant, and in this case combining the ionospheric Ohm's Law with the linear current-voltage relation for parallel currents leads to an outer scale length, above which electric fields can map down to the ionosphere and below which parallel electric fields become important. The effects of particle precipitation make the picture more complex, leading to enhanced ionization in upward current regions and to the possibility of feedback interactions with the magnetosphere.Determining adiabatic particle orbits in steady-state electric and magnetic fields can be used to determine the self-consistent particle and field distributions on auroral field lines. However, it is difficult to pursue this approach when the fields are varying with time. Magnetohydrodynamic (MHD) models deal with these time-dependent situations by treating the particles as a fluid. This class of model, however, cannot treat kinetic effects in detail. Such effects can in some cases be modeled by effective transport coefficients inserted into the MHD equations. Intrinsically time-dependent processes such as the development of magnetic micropulsations and the response of the magnetosphere to ionospheric fluctuations can be readily treated in this framework.The response of the lower altitude auroral zone depends in part on how the system is driven. Currents are generated in the outer parts of the magnetosphere as a result of the plasma convection. The dynamics of this region is in turn affected by the coupling to the ionosphere. Since dissipation rates are very low in the outer magnetosphere, the convection may become turbulent, implying that nonlinear effects such as spectral transfer of energy to different scales become important. MHD turbulence theory, modified by the ionospheric coupling, can describe the dynamics of the boundary-layer region. Turbulent MHD fluids can give rise to the generation of field-aligned currents through the so-called -effect, which is utilized in the theory of the generation of the Earth's magnetic field. It is suggested that similar processes acting in the boundary-layer plasma may be ultimately responsible for the generation of auroral currents.  相似文献   

5.
First magnetospheric measurements of the three-dimensional velocity distributions for positive ions and electrons within the energy range 1 eV E/Q 45keV are reported. These velocity distributions are gained with quadrispherical Lepedeas on board the spacecraft ISEE-1 and -2. Three-dimensional bulk flows of protons in the vicinity of the magnetopause and within the dayside magnetosphere and dawn sector of the magnetotail are presented. Proton drift velocities within the magnetosphere and magnetotail can be directly determined and employed to calculate the corresponding quasi-static perpendicular electric fields and to provide quantitative analyses of kinematical models for plasma motions. Nonmonotonic features in the electron velocity distributions are found simultaneously with the presence of electron cyclotron harmonic electrostatic waves in the dayside magnetosphere. The relationship of the observed electron velocity distributions to expectations for resonant pitch-angle and energy diffusion is discussed, as well as the possibility of the existence of proton cyclotron harmonic instabilities. Examples of the signature of field-aligned acceleration of protons into the magnetosphere and the presence of low-energy ionospheric ions in the near-earth magnetotail are also presented. Perpendicular electrostatic fields can be calculated from the observed three-dimensional velocity distributions and are found to have typical magnitudes of 1 mV m-1.  相似文献   

6.
Quasi-static electric fields have been measured with two spherical probes supported by cable booms providing a baseline of 42 m for the measurement. The performance of the experiment is outlined to demonstrate that electric fields can be measured with accuracies of ±0.7 mV m-1 and ±1.0 mV m-1 in the dawn-dusk and satellite-sun directions respectively. These uncertainties can be considerably reduced under favourable plasma conditions. Examples of typical observations are described.
  1. The average electric field is always characterized by an irregular structure with time scales 0.5–5 min and with amplitudes of a few mV m-1.
  2. During substorms dawn-dusk electric fields up to 20–30 mV m-1 have been observed over intervals of 30–60 s.
  3. Oscillating electric fields with peak-to-peak amplitudes up to 10 mV m-1 and periods of 3–10 min have been observed following magnetospheric disturbances.
The observations are discussed in terms of plasma motions and possible spatial scale sizes of the phenomena, standing magnetospheric wave modes and electrostatic potentials.  相似文献   

7.
Harvey  P.R.  Curtis  D.W.  Heetderks  H.D.  Pankow  D.  Rauch-Leiba  J.M.  Wittenbrock  S.K.  McFadden  J.P. 《Space Science Reviews》2001,98(1-2):113-149
The Fast Auroral Snapshot Explorer (FAST) is the second of the Small Explorer Missions which are designed to provide low cost space flight opportunities to the scientific community. FAST performs high time resolution measurements of the auroral zone in order to resolve the microphysics of the auroral acceleration region. Its primary science objectives necessitate high data volume, real-time command capability, and control of science data collection on suborbital time scales. The large number of instruments requires a sophisticated Instrument Data Processing Unit (IDPU) to organize the data into the 1 Gbit solid state memory. The large data volume produced by the instruments requires a flexible memory capable of both high data rate snapshots (12 Mbit s–1) and coarser survey data collection (0.5 Mbit s–1) to place the high rate data in context. In order to optimize the science, onboard triggering algorithms select the snapshots based upon data quality. This paper presents a detailed discussion of the hardware and software design of the FAST IDPU, describing the innovative design that has been essential to the FAST mission's success.  相似文献   

8.
Freja *, a joint Swedish and German scientific satellite launched on october 6 1992, is designed to give high temporal/spatial resolution measurements of auroral plasma characteristics. A high telemetry rate (520 kbits s–1) and 15 Mbyte distributed on board memories that give on the average 2 Mbits s–1 for one minute enablesFreja to resolve meso and micro scale phenomena in the 100 m range for particles and 1–10 m range for electric and magnetic fields. The on-board UV imager resolve auroral structures of kilometer size with a time resolution of one image per 6 s. Novel plasma instruments giveFreja the capability to increase the spatial/temporal resolution orders of magnitudes above that achieved on satellites before. The scientific objective ofFreja is to study the interaction between the hot magnetospheric plasma with the topside atmosphere/ionosphere. This interaction leads to a strong energization of magnetospheric and ionospheric plasma and an associated erosion, and loss, of matter from the Terrestrial exosphere.Freja orbits with an altitude of 600–1750 km, thus covering the lower part of the auroral acceleration region. This altitude range hosts processes that heat and energize the ionospheric plasma above the auroral zone, leading to the escape of ionospheric plasma and the formation of large density cavities.  相似文献   

9.
The characteristics of inverted-V electron precipitation fluxes deduced predominantly from observations by the Atmosphere Explorer satellites are reviewed. The energy and pitch angle distributions are presented and shown to be generally in agreement with acceleration by a parallel electrostatic potential. Characteristics of secondary electrons are examined, and effects of beam plasma instabilities on these electrons are discussed. The properties of the monoenergetic component are compared with theoretical models of creating parallel DC electric fields, and found to favor the anomalous resistivity model. The article also discusses relations of inverted-V events with other auroral phenomena including auroras, electrostatic shocks, convective electric field reversals, field-aligned currents and wave emissions. The principal conclusions are: (1) plasma sheet electrons are continuously accelerated to form inverted-V structures in the pre-midnight hemisphere independent of substorm phase, (2) the acceleration processes are probably related to large scale electrostatic wave turbulence observed at altitudes of a few thousand kilometers, (3) narrow bursts of intense electron precipitation fluxes are found to be imbedded within some inverted-V's. It is argued that the narrow bursts of intense electron precipitation have the proper characteristics to cause discrete auroral arcs in the atmosphere. We suggest that these narrow bursts are accelerated by an electrostatic shock at higher altitude and capable of producing discrete auroral arcs below the observing satellite.  相似文献   

10.
This article reviews theories and observations related to effects produced by finite (and large) Larmor radii of charged particles in the magnetosphere. The FLR effects depend on =r H /L, wherer H is the Larmor radius andL is the spatial scale for field/plasma inhomogeneity. The parameter is a basic expansion parameter for most equations describing plasma dynamics in the magnetosphere. The FLR effects enter naturally the drift approximation for particle motion and represent also non-ideal MHD terms in the fluid formalism. The linear and higher order terms in lead to charge separation, energization of particles, and produce viscosity without collisions. The FLR effects introduce also important corrections to the dispersion relations for MHD waves and drift instabilities. Expansion of plasma into magnetic field leads to filamentation of the plasma boundary and to creation of structures with thickness less than an ion gyroradius. Large Larmor radius effects (1) in curved magnetic field geometry lead to stochastic behaviour of particle trajectories and to deterministic chaos. The tiny scale of the electron and ion gyroradii does not necessarily mean that FLR/LLR phenomena have negligible effect on the macroscopic dynamics and energetics of the whole magnetosphere. On the contrary, the small scale gyro-effects may provide the physical mechanism for gyroviscous coupling between the solar wind and the magnetosphere, the mechanism for triggering disruption of the magnetotail current layer, and the mechanism for parallel electric field that accelerate auroral particles.  相似文献   

11.
Morningside aurorae at latitudes below about 70° display complex spatial and temporal structures unlike anything seen in the evening or midnight sectors. The morningside structures are believed to be formed by the precipitation of trapped electrons injected in auroral substorms; no significant role has yet been identified in the morningside auroral regions for the large-scale parallel electric fields that dominate the evening side. How those spatial and temporal structures originate has been the subject of much speculation; most theoretical mechanisms focus on the wave-particle interactions that drive pitch-angle diffusion. The principal evidence pertaining to the role of pitch-angle diffusion in the auroral regions is reviewed here. The observational evidence concerns mainly auroral emissions in the atmosphere, energetic particles observed from rockets and satellites, VLF waves at high altitudes, magnetospheric cold plasma, and magnetic pulsations detected on the ground. With the aid of such evidence, plus observations and theories related to the outer permanently trapped radiation belts, several theoretical models for the modulation of VLF wave growth in the equatorial regions have been pieced together. Those models, and the observational data supporting them, are examined to see how well they fit the observational picture and to see where they might lead in future research. The models fall into two categories: those in which the modulations are externally imposed and those in which the modulations are self-excited. For the temporal variations the self-excited mechanisms are now favored. The leading candidate involves a nonlinear relaxation oscillator; the nonlinearity may have important consequences. There are several contenders in both categories for the origin of the spatial structures, none of which agrees fully with inferences from the observations. All the theories involve critical parameters that have not yet been precisely fixed. The critical research needs are listed and discussed.  相似文献   

12.
The V-shock is identified as the primary mechanism for the acceleration of electrons responsible for the discrete aurora. A brief review of the evidence supporting the V-shock model is given, including the dynamics of auroral striations, anomalous motion of barium plasma at high altitudes and in-situ observations of large electric fields. The V-shock is a nonlinear, n = 0 ion cyclotron mode soliton, Doppler shifted to zero frequency. The V-shock is also shown to be a generalization of the one-dimensional double layer model, which is an ion acoustic soliton Doppler shifted to zero frequency. The essential difference between the double layer theory and the theory for the oblique, current-driven, laminar electrostatic shock is that the plasma dielectric constant in directions perpendicular to the magnetic field is c 2/V a /2 , where V a is the Alfvén velocity; but the plasma dielectric constant parallel to the magnetic field is unity. Otherwise, in the limit that the shock thickness perpendicular to the magnetic field is much larger than an ion gyroradius, the equations describing the double layer and the oblique shock are the same. The V-shock, while accounting for the acceleration of auroral electrons, requires an energy source and mechanism for generating large potential differences perpendicular to the magnetic field. An energy source is the earthward streaming protons coming from the distant magnetospheric tail. It is shown how these protons can be energized by the cross-tail electric field, which is the tailward extension of the polar cap dawn-to-dusk electric field. The local, large cross-field potential differences associated with the V-shock are seen to be the result of a non-linear, E × B drift turbulent cascade which transfers energy from small- to large-scale sizes. Energy at the smallest scale sizes comes from the kinetic energy in the ion cyclotron motion of the earthward streaming protons, which are unstable against the zero-frequency flute-mode instability. The review points out the gaps in our understanding of the mechanism of the diffuse aurora and the mechanism of the auroral substorm.  相似文献   

13.
We review aspects of anomalous cosmic rays (ACRs) that bear on the solar modulation of energetic particles in the heliosphere. We show that the latitudinal and radial gradients of these particles exhibit a 22-year periodicity in concert with the reversal of the Sun's magnetic field. The power-law index of the low energy portion of the energy spectrum of ACRs at the shock in 1996 appears to be -1.3, suggesting that the strength of the solar wind termination shock at the helioequatorial plane is relatively weak, with s 2.8. The rigidity dependence of the perpendicular interplanetary mean free path in the outer heliosphere for particles with rigidities between 0.2 and 0.7 GV varies approximately as R2, where R is particle rigidity. There is evidence that ACR oxygen is primarily multiply charged above 20 MeV/nuc and primarily singly-charged below 16 MeV/nuc. The location of the termination shock was at 65 AU in 1987 and 85 AU in 1994.  相似文献   

14.
There is a warm tenuous partially ionized cloud (T104 K,n(HI)0.1 cm–3,n(Hii 0.22–0.44 cm–3) surrounding the solar system which regulates the environment of the solar system, determines the structure of the heliopause region, and feeds neutral interstellar gas into the inner solar system. The velocity (V–20 km s–1 froml335°,b0° in the local standard of rest) and enhanced Caii and Feii abundances of this cloud suggest an origin as evaporated gas from cloud surfaces in the Scorpius-Centaurus Association. Although the soft X-ray emission attributed to the Local Bubble is enigmatic, optical and ultraviolet data are consistent with bubble formation caused by star formation epochs in the Scorpius-Centaurus Association as regulated by the nearby spiral arm configuration. The cloud surrounding the solar system (the local fluff) appears to be the leading region of an expanding interstellar structure (the squall line) which contains a magnetic field causing polarization of the light of nearby stars, and also absorption features in nearby upwind stars. The velocity vectors of the solar system and local fluff are perpendicular in the local standard of rest. Combining this information with the low column densities seen towards Sirius in the anti-apex direction, and the assumption that the cloud velocity vector is parallel to the surface normal, suggests that the Sun entered the local fluff within the historical past (less than 10 000 years ago) and is skimming the surface of the cloud. Comparison of magnesium absorption lines towards Sirius and anomalous cosmic-ray data suggest the local fluff is in ionization equilibrium.Reason has moons, but moons not hers, Lie mirror'd on her sea, Confounding her astronomers, But, O! delighting me.Ralph Hodgson  相似文献   

15.
During the last five years, statistical studies using plasma measurements made by the AMPTE/IRM satellite have lead to a better understanding of the structure and dynamics of the near-Earth plasma sheet between about 10 and 20R E. The most notable new findings are: (1) the adiabatic non-isentropic behavior of the tail plasma during quiet times; (2) the strong non-adiabatic heating of ions and electrons during substorms and the strong coupling of the ion and electron temperature withT i/Ti7; and (3) the high-speed flow bursts which carry most of the tail plasma transport. Moreover, it became clear that it is the central plasma sheet, and not the plasma sheet boundary layer, which is most affected by substorm activity.  相似文献   

16.
The downward field-aligned current region plays an active role in magnetosphere-ionosphere coupling processes associated with aurora. A quasi-static electric field structure with a downward parallel electric field forms at altitudes between 800 km and 5000 km, accelerating ionospheric electrons upward, away from the auroral ionosphere. A wealth of related phenomena, including energetic ion conics, electron solitary waves, low-frequency wave activity, and plasma density cavities occur in this region, which also acts as a source region for VLF saucers. Results are presented from sounding rockets and satellites, such as Freja, FAST, Viking, and Cluster, to illustrate the characteristics of the electric fields and related parameters, at altitudes below, within, and above the acceleration region. Special emphasis will be on the high-altitude characteristics and dynamics of quasi-static electric field structures observed by Cluster. These structures, which extend up to altitudes of at least 4–5 Earth radii, appear commonly as monopolar or bipolar electric fields. The former are found to occur at sharp boundaries, such as the polar cap boundary whereas the bipolar fields occur at soft plasma boundaries within the plasma sheet. The temporal evolution of quasi-static electric field structures, as captured by the pearls-on-a-string configuration of the Cluster spacecraft indicates that the formation of the electric field structures and of ionospheric plasma density cavities are closely coupled processes. A related feature of the downward current often seen is a broadening of the current sheet with time, possibly related to the depletion process. Preliminary studies of the coupling of electric fields in the downward current region, show that small-scale structures appear to be decoupled from the ionosphere, similar to what has been found for the upward current region. However, exceptions are also found where small-scale electric fields couple perfectly between the ionosphere and Cluster altitudes. Recent FAST results indicate that the degree of coupling differs between sheet-like and curved structures, and that it is typically partial. The mapping depends on the current-voltage relationship in the downward current region, which is highly non-linear and still unclear, as to its specific form.  相似文献   

17.
The double probe, floating potential instrumentation on ISEE-1 is producing reliable direct measurements of the ambient DC electric field at the bow shock, at the magnetopause, and throughout the magnetosheath, tail plasma sheet and plasmasphere. In the solar wind and in middle latitude regions of the magnetosphere spacecraft sheath fields obscure the ambient field under low plasma flux conditions such that valid measurements are confined to periods of moderately intense flux. Initial results show: (a) that the DC electric field is enhanced by roughly a factor of two in a narrow region at the front, increasing B, edge of the bow shock, (b) that scale lengths for large changes in E at the sub-solar magnetopause are considerably shorter than scale lengths associated with the magnetic structure of the magnetopause, and (c) that the transverse distribution of B-aligned E-fields between the outer magnetosphere and ionospheric levels must be highly complex to account for the random turbulent appearance of the magnetospheric fields and the lack of corresponding time-space variations at ionospheric levels. Spike-like, non-oscillatory, fields lasting <0.2 s are occasionally seen at the bow shock and at the magnetopause and also intermittently appear in magnetosheath and plasma sheet regions under highly variable field conditions. These suggest the existence of field phenomena occurring over dimensions comparable to the probe separation and c/pe (the characteristic electron cyclotron radius) where pe is the electron plasma frequency.  相似文献   

18.
We report the results of a study of the 12-hour average distribution functions of high Z nuclei as measured over a 10-day interval on the Ulysses spacecraft at a helioradius of5.2 A.U. We use the good time and atomic mass resolution of the composition aperture of the HI-SCALE instrument to determine the form of the distribution functions for C, O, Ne, Mg, Si, and Fe over the energy range 0.5–16 MeV/nucl. We find that the distribution functions of these ions can be organized by characteristic velocities that have values ranging between2000–3500 km/sec over this interval.  相似文献   

19.
The characteristics of the recurrent electron (38–53 keV) and ion (>0.5 MeV) enhancements observed by Ulysses from mid-1992 to April 1994 are presented. The magnitude of the ion flux increases reached a maximum at a latitude of 20°S and decreased afterwards by 23%/degree until early 1994. The magnitude of the electron increases showed a similar trend until May, 1993, after which time it became approximately constant, until it started to increase again in early 1994. The electron enhancements have lagged the protons by up to 5 days once Ulysses left the heliospheric current sheet (mid-1993). The electron spectral index tended to harden (a) during the decay of the event and (b) as the latitude increased, up to 50°S. The events have recurred on a 26.0 day period, but with significant phase shifts over the 25 rotations studied. The H/He ratio decreases across the maximum intensity. The mean minimum value for H/He was 3.5±0.3, lower than that measured in previous studies in the ecliptic plane.  相似文献   

20.
The visual aurora takes on a variety of forms. Aurora has a tendency to appear first as very thin, highly structured forms. Over time, these tend to diffuse creating much thicker forms. It is suggested that the extreme variety of auroral forms can be understood in terms of one acceleration mechanism to produce a narrow, field-aligned beam and another process that scatters electrons into trapped orbits. The scattering is due to beam- plasma interactions that generate waves on the upper-hybrid resonance curve. These waves are effective in scattering electrons from parallel to perpendicular directions. The diffuse forms are therefore caused by precipitation of quasi-trapped electrons that have drifted from the field lines on which they were accelerated. Electrons scattered into trapped orbits may also constitute the seed population for the electron radiation belts. It is also suggested that the electron beams are accelerated by inertial Alfven waves that propagate current filaments from the turbulent region in the near-Earth plasma sheet to the auroral zone ionosphere. Electrons can be accelerated by becoming trapped in inertial Alfven waves whose phase velocity increases as they propagate toward the Earth. Specific numerical simulations that could give substance to these suggestions are proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号