首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
Application of digital cross-correlation spectroscopy to the spectra of the W Serpentis binaries SX Cas and RX Cas has allowed an accurate determination of the orbits and rotations of the (mass-losing) K-subgiant secondary components. The distortion of the primary radial-velocity curves due to the influence of the prominent accretion disks in these systems has been modelled to first order. This enables us to estimate k 1, and thereby the mass ratio q ≈ 0.30, to within ~ ± 20%. The absolute radii of the secondaries are derived independently from the observed rotations and periods, assuming synchronous rotation. They show that the stars fill their Roche lobes, or at least very nearly so. Rough fits to the available photometry shows both primaries to be unevolved mid-B stars; that in RX Cas appears completely obscured by the disk. Preliminary spectroscopic data for W Ser and W Cru show some promise for similar analyses of these systems.  相似文献   

2.
Massive stars, at least \(\sim10\) times more massive than the Sun, have two key properties that make them the main drivers of evolution of star clusters, galaxies, and the Universe as a whole. On the one hand, the outer layers of massive stars are so hot that they produce most of the ionizing ultraviolet radiation of galaxies; in fact, the first massive stars helped to re-ionize the Universe after its Dark Ages. Another important property of massive stars are the strong stellar winds and outflows they produce. This mass loss, and finally the explosion of a massive star as a supernova or a gamma-ray burst, provide a significant input of mechanical and radiative energy into the interstellar space. These two properties together make massive stars one of the most important cosmic engines: they trigger the star formation and enrich the interstellar medium with heavy elements, that ultimately leads to formation of Earth-like rocky planets and the development of complex life. The study of massive star winds is thus a truly multidisciplinary field and has a wide impact on different areas of astronomy.In recent years observational and theoretical evidences have been growing that these winds are not smooth and homogeneous as previously assumed, but rather populated by dense “clumps”. The presence of these structures dramatically affects the mass loss rates derived from the study of stellar winds. Clump properties in isolated stars are nowadays inferred mostly through indirect methods (i.e., spectroscopic observations of line profiles in various wavelength regimes, and their analysis based on tailored, inhomogeneous wind models). The limited characterization of the clump physical properties (mass, size) obtained so far have led to large uncertainties in the mass loss rates from massive stars. Such uncertainties limit our understanding of the role of massive star winds in galactic and cosmic evolution.Supergiant high mass X-ray binaries (SgXBs) are among the brightest X-ray sources in the sky. A large number of them consist of a neutron star accreting from the wind of a massive companion and producing a powerful X-ray source. The characteristics of the stellar wind together with the complex interactions between the compact object and the donor star determine the observed X-ray output from all these systems. Consequently, the use of SgXBs for studies of massive stars is only possible when the physics of the stellar winds, the compact objects, and accretion mechanisms are combined together and confronted with observations.This detailed review summarises the current knowledge on the theory and observations of winds from massive stars, as well as on observations and accretion processes in wind-fed high mass X-ray binaries. The aim is to combine in the near future all available theoretical diagnostics and observational measurements to achieve a unified picture of massive star winds in isolated objects and in binary systems.  相似文献   

3.
Accretion onto black holes powers most luminous compact sources in the Universe. Black holes are found with masses extending over an extraordinary broad dynamic range, from several to a few billion times the mass of the Sun. Depending on their position on the mass scale, they may manifest themselves as X-ray binaries or active galactic nuclei. X-ray binaries harbor stellar mass black holes—endpoints of the evolution of massive stars. They have been studied by X-ray astronomy since its inception in the early 60-ies, however, the enigma of the most luminous of them—ultra-luminous X-ray sources, still remains unsolved. Supermassive black holes, lurking at the centers of galaxies, are up to hundreds of millions times more massive and give rise to the wide variety of different phenomena collectively termed “Active Galactic Nuclei”. The most luminous of them reach the Eddington luminosity limit for a few billions solar masses object and are found at redshifts as high as z≥5–7. Accretion onto supermassive black holes in AGN and stellar- and (possibly) intermediate mass black holes in X-ray binaries and ultra-luminous X-ray sources in star-forming galaxies can explain most, if not all, of the observed brightness of the cosmic X-ray background radiation. Despite the vast difference in the mass scale, accretion in X-ray binaries and AGN is governed by the same physical laws, so a degree of quantitative analogy among them is expected. Indeed, all luminous black holes are successfully described by the standard Shakura-Sunyaev theory of accretion disks, while the output of low-luminosity accreting black holes in the form of mechanical and radiative power of the associated jets obeys to a unified scaling relation, termed as the “fundamental plane of black holes”. From that standpoint, in this review we discuss formation of radiation in X-ray binaries and AGN, emphasizing their main similarities and differences, and examine our current knowledge of the demographics of stellar mass and supermassive black holes.  相似文献   

4.
The Einstein Observatory showed that Wolf-Rayet stars have a much larger range in the ratio of X-ray to bolometric luminosity than normal early-type stars. EXOSAT measurements of HD193T93 (WCT+abs) show it to be extremely X-ray bright. This result is probably not connected with the infra-red and radio outburst that the star underwent in 1977. Other Einstein X-ray sources which are probably identified with Wolf-Rayet stars are newly reported.  相似文献   

5.
The evolution of massive stars   总被引:1,自引:0,他引:1  
The evolution of stars with masses between 15 M 0 and 100M 0 is considered. Stars in this mass range lose a considerable fraction of their matter during their evolution.The treatment of convection, semi-convection and the influence of mass loss by stellar winds at different evolutionary phases are analysed as well as the adopted opacities.Evolutionary sequences computed by various groups are examined and compared with observations, and the advanced evolution of a 15M 0 and a 25M 0 star from zero-age main sequence (ZAMS) through iron collapse is discussed.The effect of centrifugal forces on stellar wind mass loss and the influence of rotation on evolutionary models is examined. As a consequence of the outflow of matter deeper layers show up and when the mass loss rates are large enough layers with changed composition, due to interior nuclear reactions, appear on the surface.The evolution of massive close binaries as well during the phase of mass loss by stellar wind as during the mass exchange and mass loss phase due to Roche lobe overflow is treated in detail, and the value of the parameters governing mass and angular momentum losses are discussed.The problem of the Wolf-Rayet stars, their origin and the possibilities of their production either as single stars or as massive binaries is examined.Finally, the origin of X-ray binaries is discussed and the scenario for the formation of these objects (starting from massive ZAMS close binaries, through Wolf-Rayet binaries leading to OB-stars with a compact companion after a supernova explosion) is reviewed and completed, including stellar wind mass loss.  相似文献   

6.
The ultraviolet spectral images of thousands of faint stars, up to the 13th mag., in the wavelength region of 2000–5000 Å are obtained by means of the space astrophysical observatory Orion-2 aboard the spaceship Soyuz-13. These spectrograms were designed generally for an investigation of the continuous spectra of the stars in ultraviolet. The processing and measurement of part of the material available confirm the expectations for the solution of a large number of problems concerning the physics of stars and stellar atmospheres. Some of the results obtained are included in the present review. Particularly, the observed distribution of continuous energy in the ultraviolet of normal hot stars is in line, according to Orion-2 data, with theoretical prediction; the existence of a new type of high temperature (> 20000K) and low absolute luminosity stars is noticed; the blocking effect of the ultraviolet absorption lines expected for the A-type stars is confirmed; a number of empirical regularities concerning the behaviour of the ultraviolet doublet of ionized magnesium, 2800 Mg ii, in the stellar spectra are derived; the chromosphere in cold stars is detected; the role of a multiplet of ionized titanium, 3080 Ti ii, in stellar spectra is revealed; probably an abnormal silicon-rich stellar envelope around a Be-type star is discovered; a new method for the spectral classification of the stars by their ultraviolet spectral images is developed; a range of interesting facts relating to the structure of the ultraviolet spectra of middle type stars (F-K) come to the fore; an exceptional ultraviolet spectrogram for the planetary nebula II 2149 and its nuclei is obtained; the blocking effect of emission lines in the spectrum of the B-type emission and normal O-type stars has been detected; a remarkably faint (12itm.6) and high temperature star (No. 1) of strange spectral structure has been discovered.  相似文献   

7.
Summary Soft X-ray (0.3–3.5 keV) observations with the Imaging Proportional Counter (IPC) onboard Einstein Observatory are presented for a sample of some 20 cool stars of luminosity classes III–V. The results are compared with the Ca II H and K emission, which had served as a selection criterion.The specific X-ray flux FX is an increasing function of the specific Ca II H and K line-core flux FH+K. This correlation can be considerably improved by replacing FH+K by the excess flux (FH+K) above a certain lower limit which varies with B-V. This relation holds with little scatter over the two decades in FX in our sample. The FX-FH+K relation shows no significant dependence on spectral type or luminosity class, it suits close binaries as well as single stars. However, the coronal X-ray temperature Tc strongly depends on the luminosity class: Tc 3 106 K for dwarfs and 107 K for giants.The results are interpreted in the framework of magnetic activity. The X-ray emission and the excess Ca II H and K flux are attributed to magnetic structure in the corona and chromosphere, the magnetic features emerging from the stellar convective envelope, where they are generated by dynamo action.  相似文献   

8.
The fundamental properties of 24 Galactic WN stars are determined from analyses of their optical, UV and IR spectra using sophisticated model atmosphere codes (Hillier, 1987, 1990). Terminal velocities, stellar luminosities, temperatures, mass loss rates and abundances of hydrogen, helium, carbon, nitrogen and oxygen are determined. Stellar parameters are derived using diagnostic lines and interstellar reddenings found from fitting theoretical continua to observed energy distributions.Our results confirm that the parameters of WN stars span a large range in temperature (T*=30–90,000 K), luminosity (log L*/L=4.8–5.9), mass loss (M=0.9–12×10–5 M yr–1) and terminal velocity (v =630–3300 km s–1). Hydrogen abundances are determined, and found to be low in WNEw and WNEs stars (<15% by mass) and considerable in most WNL stars (1–50%). Metal abundances are also determined with the nitrogen content found to lie in the range N/He=1–5×10–3 (by number) for all subtypes, and C/N 0.02 in broad agreement with the predictions of Maeder (1991). Enhanced O/N and O/C is found for HD 104994 (WN3p) suggesting a peculiar evolutionary history. Our results suggest that single WNL+abs stars may represent an evolutionary stage immediately after the Of phase. Since some WNE stars exist with non-negligible hydrogen contents (e.g. WR136) evolution may proceed directly from WNL+abs to WNE in some cases, circumventing the luminous blue variable (LBV) or red supergiant (RSG) stage.  相似文献   

9.
Good-quality empirical results on 62 short-period binary stars recently summarised by Hilditch & Bell (1987) and Hilditch, King & McFarlane (1988) are discussed in terms of evolutionary paths from detached to semi-detached and contact states. These data suggest two evolutionary paths to the contact binaries — from detached systems directly into contact to form initially shallow-contact systems, and via case A mass transfer to semi-detached states, thence to contact systems. These empirical results support previous arguments based on evolutionary models and less detailed observational data.Concern is expressed about the paucity of high-quality spectroscopic data, particularly for low-mass systems displaying EB-type light curves and the resultant limitations on analyses of those light curves. Such systems provide tests of evolution into contact for the first time, or of broken-contact phases for WUMa-type binaries. The crucial importance of long-term monitoring (decades) of times of minima as indicators of mass transfer rates amongst these interacting binaries is also noted.  相似文献   

10.
We present a general overview of the structure and evolution of massive stars of masses ≥12 M during their pre-supernova stages. We think it is worth reviewing this topic owing to the crucial role of massive stars in astrophysics, especially in the evolution of galaxies and the universe. We have performed several test computations with the aim to analyze and discuss many physical uncertainties still encountered in massive-star evolution. In particular, we explore the effects of mass loss, convection, rotation, 12C(α,γ)16O reaction and initial metallicity. We also compare and analyze the similarities and differences among various works and ours. Finally, we present useful comments on the nucleosynthesis from massive stars concerning the s-process and the yields for 26Al and 60Fe.  相似文献   

11.
Good-quality empirical results on 62 short-period binary stars recently summarised by Hilditch & Bell (1987) and Hilditch, King & McFarlane (1988) are discussed in terms of evolutionary paths from detached to semi-detached and contact states. These data suggest two evolutionary paths to the contact binaries — from detached systems directly into contact to form initially shallow-contact systems, and via case A mass transfer to semi-detached states, thence to contact systems. These empirical results support previous arguments based on evolutionary models and less detailed observational data. Concern is expressed about the paucity of high-quality spectroscopic data, particularly for low-mass systems displaying EB-type light curves and the resultant limitations on analyses of those light curves. Such systems provide tests of evolution into contact for the first time, or of broken-contact phases for WUMa-type binaries. The crucial importance of long-term monitoring (decades) of times of minima as indicators of mass transfer rates amongst these interacting binaries is also noted.  相似文献   

12.
We see neutron stars principally by their radio and X-ray emission. Their appearance in these different bands depends on whether the emission comes from the surface or its magnetosphere. New phenomena continue to be found from neutron stars, which makes it an exciting and topical research area. This volume is a collection of the papers from a NATO Advanced Study Institute held in Italy in October 1996. Many, and for me the most interesting ones, are substantial reviews on topics such as Pulsar magnetic fields and glitches (M. Ruderman), Radio pulsar population properties (D. Lorimer), Gamma-ray emission from CGRO pulsars (G. Kanbach), Neutron stars and black holes in X-ray binaries (J. van Paradijs), Kilohertz quasi-periodic oscillations in low-mass X-ray binaries (M. van der Klis), Thermonuclear burning on rapidly accreting neutron stars (L. Bildsten), On the X-ray emission properties of rotation powered pulsars (W. Becker and J. Truemper). It will serve as a useful reference and source book for students in high energy astrophysics and related fields. The high price may deter its purchase by individuals, but it will be a good volume for a library needing recent coverage on neutron stars. It does not of course include the most recent developments on anomalous X-ray pulsars or magnetars. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

13.
In this work I will try to give the most general complete view, comparatively with the conciseness, on RU Lupi, which is an Extreme Classical T Tauri star.T Tauri stars (TTSs) form a class of low luminosity stars which are going to the Main Sequence. They are young contracting objects that are in a particular Pre-Main-Sequence (PMS) evolutionary phase. The study of the Pre-Main-Sequence Stars (PMSSs) can provide crucial information on stellar evolution and formation of planetary systems, and therefore also indirect information on the processes occurred in the primeval solar system.For this reason, firstly I will briefly comment a sort of classification of stars in PMS phases (Section 2); then I will emphasize the main characteristics of TTSs and the current theories (Section 3). The up-to-date observational properties of RU Lupi (Section 4) and a discussion on their explanation within the framework of theories (Section 5) will allow me to draw the conclusions (Section 6) and to argue the most convenient line of investigation (Section 7) both experimental and theoretical for a better understanding of the underlying physics of these systems. Finally (Section 8), I will comment in general on the methodology of investigation of highly variable cosmic sources.An original result has been obtained in this work: the flare-like events (FLEs) of RU Lupi, occurring in all wavelength regions, are periodic with aP FLE=27.686±0.002 days. This periodicity could be the rotational period of the star.  相似文献   

14.
The present knowledge on the evolution of semidetached systems is reviewed. Characteristics of observed systems are discussed and general properties tested by the behaviour of theoretical models. New models of mass accreting companion stars are computed. The accretion phase is divided into a fast and slow phase with an accretion rate depending on the initial mass of the mass losing star and on the initial mass ratio, assuming the systems are undergoing a case B of mass transfer. The results are compared with observed systems with masses of the gainers located within the theoretical range. Up to now no computations exist for the evolution of medium mass close binaries including overshooting of the convective core. However some of the influences of extended convective mixing on the interaction of close binaries are investigated. A larger probability for the occurrence of case A of mass exchange and a larger remnant mass at the end of the process are the most important results. Finally the investigation into the origin of individual systems (in mass, mass ratio and period) is discussed, showing that progress both in observations and in theoretical models result in a more detailed and more restricted determination of the initial parameters of the individual systems.Research associate, NFWO, Belgium.  相似文献   

15.
16.
Initial results are presented from a study of H γ profiles in the two interacting binaries KX And and RX Cas of W Serpentis type. The used CCD spectra with a resolution of 0.13Å/px were obtained with the 2.2m telescope and the Coudé spectrograph at the German-Spanish Astronomical Center at Calar Alto/Spain. KX And. This star is probably a non-eclipsing member of the W Serpentis type interactive binaries and has a period of P = 38.908 days. Our seven spectra of KX And were obtained at phase 0.54 – 0.75. The P Cyg profiles of the H γ line during our observations indicate an expanding shell. The asymetry becomes blue-sided at phase 0.67 and increases thereafter. This points toward a strong outflow of matter in the vicinity of the L3 point. RX Cas. According to the model of Andersen et al. (1988) the primary is a mid-B type star with M = 5.8M and R = 2.5R . The star is completely obscured by a geometrically and optically thick disk, which is supplied by mass transfer from the other component. The secondary is a K1 giant with M = 1.8M and R = 23.5R and fills out his critical Roche lobe. Radiative and geometrical properties of the disk are variable and its structure is probably not homogenous. Five spectra of RX Cas were obtained during the primary eclipse (phase 0.95 – 0.19). The observed double-peak emission is seen only after the eclipse with a separation of ≈ 250 km/s peak-to-peak, while during the eclipse an asymetric line profile can be observed with a red-shifted emission always presented. Also, a central emission at φ = 0.94 should be noticed, probably originating in the vicinity of L1. The observations of both systems indicate that we are dealing with strongly interacting binaries. Further observations are planned for better covering of phase.  相似文献   

17.
Stellar coronae were among the first predicted X-ray sources. Because of their relatively low X-ray luminosities, however, they have been discovered only during the last few years.In the present paper the current state of stellar coronal X- and UV observations has been reviewed, including some preliminary observational results from the HEAO-1 and IUE satellites, but still without any result from the recently launched X-ray satellite HEAO-2.Late 1978 about two dozens of stellar soft X-ray sources have been detected, e.g., normal stars like the Sun (e.g., Cen), very active stars (RS CVn systems), and possibly a corona around an intermediately hot white dwarf (Sirius B).The observational results of various objects have been discussed and compared with X-ray luminosity predictions based on minimum-flux coronal models.  相似文献   

18.
Application of digital cross-correlation spectroscopy to the spectra of the W Serpentis binaries SX Cas and RX Cas has allowed an accurate determination of the orbits and rotations of the (mass-losing) K-subgiant secondary components. The distortion of the primary radial-velocity curves due to the influence of the prominent accretion disks in these systems has been modelled to first order. This enables us to estimate k 1, and thereby the mass ratio q 0.30, to within ± 20%. The absolute radii of the secondaries are derived independently from the observed rotations and periods, assuming synchronous rotation. They show that the stars fill their Roche lobes, or at least very nearly so. Rough fits to the available photometry shows both primaries to be unevolved mid-B stars; that in RX Cas appears completely obscured by the disk. Preliminary spectroscopic data for W Ser and W Cru show some promise for similar analyses of these systems.  相似文献   

19.
20.
We present quantitative spectroscopic NLTE analyses of the components of well detached early type binaries (DH Cep, Y Cyg, V453 Cyg, and CW Cep). The position of the stars in the logL-logT eff diagram is discussed. We find significantly higher temperatures for the components of Y Cygni from spectral analysis by means of unblanketed NLTE model photospheres than those given by the orbit analysis. Therefore the comparison with evolutionary tracks yields larger masses. The spectroscopic temperatures of V453 Cygni and CW Cephei agree with the orbit data, but the evolutionary tracks point to larger masses also. However, if we account for some 2000K lower effective temperatures due to line blanketing, the luminosities, temperatures and masses of all stellar components are in good agreement, except for the case of DH Cep.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号