首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
We review the long term variability properties of accretion powered X-ray pulsars in massive Pop. I binary systems and discuss how their characteristics, in particular the large dynamic range in luminosity of the transient pulsars, can be understood in terms of the interaction of the accreting material with the neutron star magnetosphere. We point out that the X-ray pulsar transient activity in general can be due to the transition between direct wind accretion and a regime in which the centrifugal drag exerted by the pulsar magnetosphere inhibits accretion onto the neutron star surface.  相似文献   

2.
This paper briefly reviews the competition between massive single star and massive close binary evolution the last two decades. The status of the binary evolutionary model is summarized, the assumptions and simplifications are critically discussed. Using all computations performed since 1970, general conclusions are drawn and a comparison with massive single star evolution is presented. Special attention is given at the assumptions behind the commonly accepted model for the mass gainer and a new accretion model is proposed. The binary results in combinarion with single star evolution are compared with observations of massive stars with emphasis on the HR diagram, star number counts, WR stars, SN 1987A, OBN and OBC stars.  相似文献   

3.
The general picture that emerged by the end of 1990s from a large set of optical and X-ray, spectral and timing data was that the X-rays are produced in the innermost hot part of the accretion flow, while the optical/infrared (OIR) emission is mainly produced by the irradiated outer thin accretion disc. Recent multiwavelength observations of Galactic black hole transients show that the situation is not so simple. Fast variability in the OIR band, OIR excesses above the thermal emission and a complicated interplay between the X-ray and the OIR light curves imply that the OIR emitting region is much more compact. One of the popular hypotheses is that the jet contributes to the OIR emission and even is responsible for the bulk of the X-rays. However, this scenario is largely ad hoc and is in contradiction with many previously established facts. Alternatively, the hot accretion flow, known to be consistent with the X-ray spectral and timing data, is also a viable candidate to produce the OIR radiation. The hot-flow scenario naturally explains the power-law like OIR spectra, fast OIR variability and its complex relation to the X-rays if the hot flow contains non-thermal electrons (even in energetically negligible quantities), which are required by the presence of the MeV tail in Cyg X-1. The presence of non-thermal electrons also lowers the equilibrium electron temperature in the hot flow model to ?100 keV, making it more consistent with observations. Here we argue that any viable model should simultaneously explain a large set of spectral and timing data and show that the hybrid (thermal/non-thermal) hot flow model satisfies most of the constraints.  相似文献   

4.
For the evolution of the secondary component of a massive close binary system, it is generally assumed that the mass accretion during core H-burning simply leads to its rejuvenation, i.e. that it evolves like a normal main sequence star with a mass corresponding to its mass after the accretion ceased. We reinvestigate this problem in the framework of a time-dependent semiconvection theory. We find that the process of adaptation of the convective core size to the new (larger) stellar mass may not be completed until core hydrogen depletion, i.e. no rejuvenation occurs. The resulting secondaries show strong differences compared to single stars of same mass.  相似文献   

5.
The formation of the giant planets seems to be best explained by accretion of planetesimals to form massive cores, which in the case of Jupiter and Saturn were able to capture nebular gas. However, the timescale for accretion of such cores has been a problem. Accretion in the outer solar system differs qualitatively from planetary growth in the terrestrial region, as the larger embryo masses and lower orbital velocities make bodies more subject to gravitational scattering. The planetesimal swarm in the outer nebula may be seeded by earlier-formed large bodies scattered from the region near the nebular “snow line”. Such a seed body can experience rapid runaway growth undisturbed by competitors; the style of growth is not oligarchy, but monarchy.  相似文献   

6.
7.
Massive stars, at least \(\sim10\) times more massive than the Sun, have two key properties that make them the main drivers of evolution of star clusters, galaxies, and the Universe as a whole. On the one hand, the outer layers of massive stars are so hot that they produce most of the ionizing ultraviolet radiation of galaxies; in fact, the first massive stars helped to re-ionize the Universe after its Dark Ages. Another important property of massive stars are the strong stellar winds and outflows they produce. This mass loss, and finally the explosion of a massive star as a supernova or a gamma-ray burst, provide a significant input of mechanical and radiative energy into the interstellar space. These two properties together make massive stars one of the most important cosmic engines: they trigger the star formation and enrich the interstellar medium with heavy elements, that ultimately leads to formation of Earth-like rocky planets and the development of complex life. The study of massive star winds is thus a truly multidisciplinary field and has a wide impact on different areas of astronomy.In recent years observational and theoretical evidences have been growing that these winds are not smooth and homogeneous as previously assumed, but rather populated by dense “clumps”. The presence of these structures dramatically affects the mass loss rates derived from the study of stellar winds. Clump properties in isolated stars are nowadays inferred mostly through indirect methods (i.e., spectroscopic observations of line profiles in various wavelength regimes, and their analysis based on tailored, inhomogeneous wind models). The limited characterization of the clump physical properties (mass, size) obtained so far have led to large uncertainties in the mass loss rates from massive stars. Such uncertainties limit our understanding of the role of massive star winds in galactic and cosmic evolution.Supergiant high mass X-ray binaries (SgXBs) are among the brightest X-ray sources in the sky. A large number of them consist of a neutron star accreting from the wind of a massive companion and producing a powerful X-ray source. The characteristics of the stellar wind together with the complex interactions between the compact object and the donor star determine the observed X-ray output from all these systems. Consequently, the use of SgXBs for studies of massive stars is only possible when the physics of the stellar winds, the compact objects, and accretion mechanisms are combined together and confronted with observations.This detailed review summarises the current knowledge on the theory and observations of winds from massive stars, as well as on observations and accretion processes in wind-fed high mass X-ray binaries. The aim is to combine in the near future all available theoretical diagnostics and observational measurements to achieve a unified picture of massive star winds in isolated objects and in binary systems.  相似文献   

8.
The polars     
The class of cataclysmic variables called Polars, or AM Her systems, is comprehensively reviewed. Each part of these systems, from the two underlying stars, to the accretion region and the stream, is considered in turn. New developments in our understanding of the accretion region are outlined in some detail.  相似文献   

9.
Accretion onto black holes powers most luminous compact sources in the Universe. Black holes are found with masses extending over an extraordinary broad dynamic range, from several to a few billion times the mass of the Sun. Depending on their position on the mass scale, they may manifest themselves as X-ray binaries or active galactic nuclei. X-ray binaries harbor stellar mass black holes—endpoints of the evolution of massive stars. They have been studied by X-ray astronomy since its inception in the early 60-ies, however, the enigma of the most luminous of them—ultra-luminous X-ray sources, still remains unsolved. Supermassive black holes, lurking at the centers of galaxies, are up to hundreds of millions times more massive and give rise to the wide variety of different phenomena collectively termed “Active Galactic Nuclei”. The most luminous of them reach the Eddington luminosity limit for a few billions solar masses object and are found at redshifts as high as z≥5–7. Accretion onto supermassive black holes in AGN and stellar- and (possibly) intermediate mass black holes in X-ray binaries and ultra-luminous X-ray sources in star-forming galaxies can explain most, if not all, of the observed brightness of the cosmic X-ray background radiation. Despite the vast difference in the mass scale, accretion in X-ray binaries and AGN is governed by the same physical laws, so a degree of quantitative analogy among them is expected. Indeed, all luminous black holes are successfully described by the standard Shakura-Sunyaev theory of accretion disks, while the output of low-luminosity accreting black holes in the form of mechanical and radiative power of the associated jets obeys to a unified scaling relation, termed as the “fundamental plane of black holes”. From that standpoint, in this review we discuss formation of radiation in X-ray binaries and AGN, emphasizing their main similarities and differences, and examine our current knowledge of the demographics of stellar mass and supermassive black holes.  相似文献   

10.
Supermassive black holes reside at the centers of most, if not all, massive galaxies: the difference between active and quiescent galaxies is due to differences in mass accretion rate and radiative efficiency rather than whether or not they have nuclear black holes. In this contribution, methods for measuring the masses of supermassive black holes are discussed, with emphasis on reverberation mapping which is most generally applicable to accreting supermassive black holes and, in particular, to distant quasars where time resolution can be used as a surrogate for angular resolution. Indirect methods based on scaling relationships from reverberation mapping studies are also discussed, along with their current limitations.  相似文献   

11.
结冰问题严重威胁现代飞行器的飞行安全。当前,数值模拟结冰过程是一种高效的结冰问题研究方法。本文首先对OAXXX翼型生成六面体计算网格,然后对该翼型的流场、水滴撞击、结冰过程进行了数值模拟研究,重点研究了不同的MVD(平均水滴直径)对于水滴收集效率、冰形的影响,并将不同MVD情况下结冰后的翼型气动特性和结冰前进行了对比。  相似文献   

12.
The environments of both hot and cool stars are the sites of highly dynamic processes involving motion of gas and plasma in winds, flows across shocks, plasma motions in closed magnetic fields, or streams along magnetospheric accretion funnels. X-ray spectroscopy has opened new windows toward the study of these processes. Kinematics are evident in line shifts and line broadening, and also more indirectly through the analysis and interpretation of density-sensitive lines. In hot stellar winds, expanding-wind kinematics are directly seen in broadened lines although the broadening has turned out to often be smaller than anticipated, and some lines are so narrow that coronal models have been revived. Although X-ray spectra of cool stars have shown line shifts and broadening due to the kinematics of the entire corona, e.g., in binary systems, intrinsic mass motions are challenging to observe at the presently available resolution. Much indirect evidence for mass motion in magnetic coronae is nevertheless available. And finally, spectral diagnostics has also led to a new picture of X-ray production in accreting pre-main sequence stars where massive accretion flows collide with the photospheric gas, producing shocks in which gas is heated to high temperatures. We summarize evidence for the above mechanisms based on spectroscopic data from XMM-Newton and Chandra.  相似文献   

13.
丁娣  车竞  钱炜祺  汪清 《航空学报》2018,39(3):121626-121626
针对国内大型飞机结冰防护需求,开展针对大型结冰研究样机的H算法参数辨识结冰探测研究。首先通过参数调节选取一组合适的H算法参数,利用考虑测量噪声的结冰研究样机飞行仿真数据验证H算法的辨识能力,由结果对比发现辨识算法能够跟踪飞机气动导数随结冰累积过程的变化趋势,辨识精度较高,其最大归一化平方根(RMS)误差仅为真值的11%;分析了H算法对81种不同结冰累积过程的辨识能力,通过结果分析发现结冰累积时间较长且结冰速度较慢的情况辨识效果较差,结冰累积时间在100~300 s之间辨识精度较高;最后利用蒙特卡罗仿真分析了不同测量噪声大小对H算法辨识精度和跟踪延时的影响,给出了3个纵向气动导数在随机误差影响下的辨识误差和跟踪延时的统计结果,发现在给定噪声标准差变化范围内,升力和俯仰力矩关于迎角的导数能够得到较为准确的辨识结果,二者的归一化平方根误差均值仅为各自真值的1.8%和4%,其预报延时均值最大仅为3 s和9.5 s。  相似文献   

14.
We report photometric observations of the optical counterpart of the X-ray source 2S0921-630. The data, obtained at the South African Astronomical Observatory during 3 weeks in 1980 and 1981, are consistent with a 17.9 day periodic modulation of the flux in the B band. Correlated variability of the (B-V) and (U-B) colour indices with the B mag. is demonstrated and quantified. The observed B mag. and colours at maximum and minimum light are used to compute some of the system parameters. A model of 2S0921-630 is proposed in terms of a binary system in which the variable inclination of a luminous accretion disc produces the long-term modulation of the optical flux.  相似文献   

15.
An x-ray observation of 2S 0921-630 has been made coincident with the time of optical eclipse of this 9-day binary. No significant reduction in X-ray flux is measured. This can be explained if the binary orbit is viewed almost exactly edge-on, so that the central X-ray emitting star is obscured by the accretion disk from direct view. The X-rays that are seen are scattered into the line of sight by material above and below the disk and the apparent size of the X-ray emission region is thus large compared to the size of the occulting star.  相似文献   

16.
Wu  Kinwah 《Space Science Reviews》2000,93(3-4):611-649
The standard model of stationary and time-dependent accretion onto magnetic white dwarfs are reviewed, with emphasis on the hydrodynamic structure and the emission properties of the post-shock flow. Observational consequences and applications of the model are discussed, and results obtained from our recent calculations are also presented.  相似文献   

17.
We review results of correlated IR, optical and X-ray observations of GX 339-4 made from March 1981 through May 1984. In the soft X-ray state, the object does not show outstanding optical and X-ray variability. Night-to-night smooth optical variations of 0.3 magnitudes were however present during one observing run. In contrast, the hard X-ray state is characterised by strong erratic optical and X-ray fluctuations on time scales from 20 milliseconds to seconds, as well as 7 to 20 second quasi-periodic oscillations. The optical counterpart appears much redder in the IR during the hard state. Particular attention is drawn to the hard to soft X-ray transition which occured in June 1981. The shape of the IR to X-ray energy distribution is discussed. The unusual features of this black hole candidate are examined in the framework of the current theories of accretion.Based partly on observations obtained at the European Southern Observatory, La Silla, Chile.  相似文献   

18.
雷梦龙  常士楠  杨波 《航空学报》2018,39(9):121952-121962
三维结冰表面上的水膜流动和结冰增长是结冰计算模型应考虑的核心内容,其中广泛应用的是Myers模型。Myers模型考虑了空气剪切力和空气压力对结冰表面水膜流动的影响,以及冰层、水膜和空气之间的导热与对流传热对结冰速率的影响。本文在使用Myers模型进行结冰预测时,发现Myers模型对霜冰转化为明冰的判断标准存在缺陷,会在结冰极限处产生不合理的冰角。因此对Myers模型的结冰类型判断标准进行了修改,对机翼表面的结冰过程进行了更加准确的模拟,并应用了有效的离散算法计算水膜流动和结冰增长过程。对比了二维NACA0012翼型的单步法、多步法计算结果和实验结果。明冰结冰温度较低时,本文计算结果与实验结果吻合很好,明冰结冰温度较高时,本文对上冰角的计算与实验结果有一定差距。本文提供了三维GLC-305后掠翼的结冰计算结果和实验结果的对比,冰角厚度的计算结果略小于实验结果,但整体趋势一致。  相似文献   

19.
In this chapter, I present a summary of observational tests of the basic picture of disk accretion. An emphasis is placed on tests relevant to black holes, but many of the fundamental results are drawn from studies of other classes of systems. Evidence is discussed for the basic structures of accretion flows. The cases of systems with and without accretion disks are discussed, as is the evidence that disks actually form. Also discussed are the hot spots where accretion streams impact the disks, and the boundary layers in the inner parts of systems where the accretors are not black holes. The nature of slow, large amplitude variability is discussed. It is shown that some of the key predictions of the classical thermal-viscous ionization instability model for producing outbursts are in excellent agreement with observational results. It is also show that there are systems whose outbursts are extremely difficult to explain without invoking variations in the rate of mass transfer from the donor star into the outer accretion disk, or tidally induced variations in the mass transfer rates. Finally, I briefly discuss recent quasar microlensing measurements which give truly independent constraints on the inner accretion geometry around black holes.  相似文献   

20.
飞机机翼表面霜状冰结冰过程的数值模拟   总被引:19,自引:6,他引:13  
提出了一种处理结冰后结冰表面固壁区域移动的移动边界技术,结合欧拉坐标系下空气-过冷水滴两相流动控制方程的计算,对霜状冰的结冰过程进行了数值模拟,得到了NACA0012机翼在0°和4°攻角下机翼表面结冰后形成的冰形,与文献中的实验数据对比,表明本文的方法是可行和有效的。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号