首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
一种关于静压气体轴承节流孔系数的计算方法   总被引:1,自引:1,他引:0  
基于层流边界层方程的分离变量算法和雷诺方程的解析算法,提出了一种关于单节流孔静压气体止推轴承的节流孔系数的计算方法。该方法通过比较层流边界层方程计算获得的气体轴承的质量流量和雷诺方程计算获得的质量流量计算获得了节流孔系数。将计算获得的节流孔系数和节流孔系数为常数0.8代入单节流孔气体止推轴承的雷诺方程中,计算获得的承载力与分离变量算法求解层流边界层方程获得的承载力进行对比,可以发现,相对于采用节流孔系数为0.8来说, 采用该计算的节流孔系数求解雷诺方程的承载力与分离变量算法求解获得的承载力结果精度最大提高了8%。从而验证了该计算节流孔系数方法的正确性。   相似文献   

2.
基于考虑流体惯性的雷诺方程,利用有限差分法计算弹性环式挤压油膜阻尼器(ERSFD)的内、外油膜分布压力和油膜合力,分析ERSFD-转子系统动力学。通过比较考虑流体惯性和不考虑流体惯性时的油膜压力、油膜合力和转子幅频响应,发现当雷诺数较大时,计算结果存在明显差异。考虑流体惯性的转子系统等效刚度和阻尼均更大,临界转速更大,而共振区振幅则更小。当转子系统的转速较大,或油膜黏度较小从而雷诺数较大时,在油膜力计算中考虑流体惯性的影响是必要的。   相似文献   

3.
利用数值方法完善了弹性环式挤压油膜阻尼器(elastic ring squeeze film damper,ERSFD)的流固耦合计算模型,其中利用雷诺方程建立油膜的控制方程,利用厚板单元建立了弹性环的运动方程并采用分时迭代方法实现了弹性环-油膜的控制方程的耦合求解从而获得瞬时内外油膜的压力,并进一步识别了油膜以及ERSFD的动力学特性系数。结果表明ERSFD的阻尼系数受凸台高度影响最大,凸台高度从0.15mm增加到0.30mm, ERSFD的阻尼系数从5790(N·s)/m减小到718(N·s)/m; ERSFD刚度系数则主要取决于弹性环的厚度以及凸台数目,弹性环厚度从0.8mm增加到1.0mm,ERSFD的刚度从1.44×106N/m增加到2.51×106N/m。   相似文献   

4.
分析了弹性环式挤压油膜阻尼器 (ERSFD)油膜压力场控制方程的求解 ,导出了求解ERSFD油膜压力场 (包括油膜刚度和油膜阻尼等 )的超松弛差分迭代格式和算法 ,结合弹性环的变形位移求解算法 ,编制了计算ERSFD油膜力特性的计算程序 ,并将该算法和程序用于某发动机机之ERSFD的油膜力特性的计算。  相似文献   

5.
线接触零件部分热弹流润滑油膜厚度公式   总被引:1,自引:0,他引:1  
采用弹性流体动力润滑理论和部分弹性流体动力润滑理论的分析方法,对弹流及部分弹流润滑线接触问题进行数值求解。通过联立求解结果,分析了接触表面间油膜厚度随载荷、滚动速度、滑滚比和进油温度等因素的变化规律,获得不同工况条件下的油膜厚度值,并依此提出一种新的油膜厚度公式。新公式考虑了热效应及表面粗糙效应影响,可用于高温、高速、重载工况。计算结果比Dowson-Higginson油膜厚度公式更符合于实验数据。  相似文献   

6.
油膜温度是挤压油膜阻尼器的一项重要工作参数。本文运用有限元法对挤压油膜阻尼器油膜温度场进行分析,即根据油膜边界条件,联立求解适用于阻尼器的雷诺方程、能量方程、滑油粘温特性方程得到油膜温度分布。文中进一步分析航空发动机阻尼器的工作环境,提出启动阶段,滑油温升由于阻尼减振发热所致;稳态阶段主要由于油膜环向滑油的强迫对流换热,并提出用试凑法来求解稳态滑油工作温度。  相似文献   

7.
动力效应对民机高速抖振特性影响数值研究   总被引:1,自引:1,他引:0       下载免费PDF全文
民机的高速抖振通常是由机翼上激波诱导的分离所致,而发动机动力效应可能会对机翼上激波的强度带来明显影响.基于经过TPS标模及DLR-F6标模算例验证的、在多块结构化网格系统上求解雷诺平均N-S方程的数值方法,结合通过定常计算结果判定抖振发生原因及起始升力系数的方法,研究发动机动力效应对某民机巡航构型高速抖振特性的影响.结果表明:动力效应给基于通气短舱设计外形的高速抖振特性带来了不利影响,使其抖振起始升力系数降低约1.3%总升力系数.  相似文献   

8.
对微机电系统(MEMS)惯性测量组合(MIMU)的主要误差项进行分析,提出一种针对MIMU整体的误差补偿模型,模型囊括MEMS惯性传感器自身的零漂、互耦、标度因数非线性等误差,以及传感器安装误差、系统电路漂移等.根据模型设计整体标定和补偿方法,并用最小二乘法系统求解模型中的69个误差系数,避免单一传感器误差补偿的片面性.针对MEMS传感器明显的温度非线性,利用分段补偿的方法将所研制的MIMU的全温范围分成3段,分别求解各分段误差模型的误差系数进行补偿.经实验论证,该方法能有效地抑制多种误差项对MEMS传感器精度的影响,使MEMS陀螺和加速度计的精度提升1-2个数量级.  相似文献   

9.
圆轴承三维热流体动力润滑的研究   总被引:3,自引:1,他引:3  
联立求解了广义雷诺方程、三维能量方程、三维固体热传导方程及载荷平衡方程 ,并考虑粘度随温度及压力、密度随粘度及压力的变化 ,在油膜与轴瓦界面使用热流连续性边界条件 ,得到了圆轴承油膜及轴瓦的三维温度场。结果表明最高温度并不出现在油膜与轴瓦交界面 ,不同圆周位置沿膜厚方向的最高温度出现位置不同。证实了考虑三维温度得到的轴承的润滑性能与考虑二维温度得到的轴承润滑性能有很大的差异。采用Newton-Raphson法求解广义雷诺方程和载荷平衡方程 ,采用快速扫描法求解由有限差分离散的能量方程和热传导方程 ,在计算中发现所使用的算法收敛速度快 ,大大节约了计算时间。  相似文献   

10.
利用五阶空间离散精度的WCNS格式和多块结构网格技术,通过求解雷诺平均NS方程,开展了SST两方程模型不同湍流生成项组合方式对跨声速流动数值模拟影响的计算分析。研究的主要目的是为高阶精度格式在复杂外形上的工程应用提供技术支撑。计算模型采用了RAE2822超临界翼型和DLR-F6翼身组合体构型。研究内容主要包括不同湍流生成项对残差收敛历程、边界层湍流粘性系数分布、边界层速度分布、压力系数分布以及模型整体气动力特性的影响。不同湍流生成项组合方式的流场计算结果还与风洞试验数据进行了对比。研究结果表明:对于小迎角不存在明显分离的跨声速流动,不同湍流生成项对流场的高精度计算结果的影响很小,可以不用考虑。  相似文献   

11.
有限长椭圆瓦轴承油膜力近似解析模型   总被引:2,自引:2,他引:0  
基于动态油膜边界条件,利用分离变量法求解Reynolds方程,获得了有限长圆瓦滑动轴承油膜压力分布表达式,推导了圆瓦轴承油膜力近似解析模型.在此基础上,根据椭圆瓦轴承油膜边界条件,建立了有限长椭圆瓦轴承油膜力近似解析模型.与有限差分法模型、长轴承模型、短轴承模型对比的结果显示,有限长椭圆瓦轴承油膜力模型能够适应任意长径比,且具有较高计算精度.基于给出的模型,利用Runge-Kutta法分析了刚性转子-椭圆瓦轴承系统的动力学特性,仿真结果表明,该模型能够较好描述椭圆瓦轴承油膜动力特性.   相似文献   

12.
建立了径向轴承在载荷和速度突然变化时的三维数学模型,模型中考虑了轴瓦的热变形,在油膜和轴瓦交界面采用热流连续的理想边界条件,数值模拟轴承的瞬态温度场,并对轴承的瞬态性能进行分析。在每一瞬时,用Newton—Raphson算法同时求解Reynolds方程、膜厚方程和轴颈运动方程获得轴承油膜的压力分布和轴颈中心的运动速度,然后数值积分压力分布得到轴承的油膜力,差分运动速度得到轴颈中心位置和运动加速度。用一有效的有限差分法同时求解油膜和轴瓦的温度控制方程。最后将Reynolds方程和能量方程通过节点压力和温度相耦合获得轴承的瞬态三维温度场。结果表明本所介绍的方法收敛快,大大节约计算时间。  相似文献   

13.
本文分析了雷诺数和系统参数对于转子—挤压油膜阻尼器(SFD)系统突加不平衡响应和加速响应特性的影响。研究结果表明:油膜惯性力对系统的动态特性有影响;对于考虑油膜惯性力的系统,系统参数的变化对突加不平衡响应也有影响;对于加速通过双稳态响应区的突加不平衡响应,突加不平衡发生在不同的转速比区,响应走的路径也不相同。   相似文献   

14.
通过将径向、止推螺旋槽动压气体轴承相结合,建立了混合式动压气体轴承的润滑分析模型。阐述了其结构特点与润滑机理,建立轴承无量纲稳态Reynolds控制方程。提出混合式动压气膜压力耦合计算方法,推导气膜压力差分表达式,定义边界条件,构建气膜压力分布的数值计算方法。以最大径向承载力为目标优化结构参数。基于最优结构参数建立轴承气膜有限元模型,运用CFD分析轴承转子系统受不同冲击载荷时径向稳定性变化规律,研究混合式动压气体轴承动态特性与可靠性。搭建混合式动压气体轴承试验台,验证数值计算方法和有限元仿真分析的正确性。结果表明:提出的压力耦合计算方法可以准确地计算分析稳态气膜压力分布、承载力和承载性能,有限元仿真能更好地模拟动态流场变化,计算分析动态承载力、动态特性系数和稳定性。高转速下混合式气体轴承承载力、稳定性较好,对单向阶跃力、单向矩形力的抗冲击能力强,可靠性强。混合式动压气体轴承在优化承载性能与刚度的同时,应考虑抗冲击特性和稳定性以提高轴承的综合性能。   相似文献   

15.
朱嘉兴  刘静  符江锋 《推进技术》2019,40(6):1370-1381
针对航空燃油柱塞泵滑靴副自适应油膜的动态润滑问题,基于牛顿拉夫逊方法,建立了考虑滑靴副油膜支承作用与其动力学状态动态耦合关系的滑靴副润滑计算模型。在此基础上,计入前级部件内流作用对油膜特性的影响,通过CFD内流分析和Reynolds润滑模型相结合的仿真方法,对航空柱塞泵滑靴副及其前级部件进行了一体式联合仿真研究。研究结果表明:仿真与试验结果的误差保持在4.3%以内,CFD仿真方法可以实现对滑靴副前级部件内流场的准确模拟;转速从4kr/min增至5kr/min时,膜厚的最大倾覆值减小至原数值的27.15%,并且低压区滑靴厚度变化率的增大率最大可达62.02%;而出口压力增大率为66.7%时,引起全周期内膜厚变化率波动幅度不同程度的增大;在转动周期内,滑靴的自适应润滑效果通过油膜厚度场和压力场的耦合变化形成自适应动压支承效应来实现。  相似文献   

16.
基于能量守恒原理推导计入气体稀薄效应的修正能量方程及其有限差分表达式,并通过偏导数法和有限差分法联立求解修正Reynolds方程、修正能量方程、气体黏温关系和气膜厚度方程,详细研究了微型气体轴承静动态性能随结构参数、轴颈倾斜方位角和黏温热效应的变化规律。结果表明:气膜热效应提高了微型气体轴承的承载能力、摩擦因数和动态刚度系数,而降低了直接阻尼系数,轴颈倾斜误差对微型气体轴承的静、动态性能均产生不利影响,计算结果可为提高微型气体动压轴承?转子系统的稳定性提供重要理论依据。   相似文献   

17.
《中国航空学报》2016,(3):814-823
A computational fluid dynamics(CFD) simulation method based on 3-D Navier–Stokes equation and Arbitrary Lagrangian–Eulerian(ALE) method is presented to analyze the grooved slipper performance of piston pump.The moving domain of grooved slipper is transformed into a fixed reference domain by the ALE method,which makes it convenient to take the effects of rotate speed,body force,temperature,and oil viscosity into account.A geometric model to express the complex structure,which covers the orifice of piston and slipper,vented groove and the oil film,is constructed.Corresponding to different oil film thicknesses calculated in light of hydrostatic equilibrium theory and boundary conditions,a set of simulations is conducted in COMSOL to analyze the pump characteristics and effects of geometry(groove width and radius,orifice size) on these characteristics.Furthermore,the mechanics and hydraulics analyses are employed to validate the CFD model,and there is an excellent agreement between simulation and analytical results.The simulation results show that the sealing land radius,orifice size and groove width all dramatically affect the slipper behavior,and an optimum tradeoff among these factors is conducive to optimizing the pump design.  相似文献   

18.
《中国航空学报》2023,36(8):395-407
The wear condition of the piston/cylinder pair is crucial to the performance and reliability of the axial piston pump. The hard piston surface, the soft cylinder bore surface, and the interface oil film affects each other during the wear process. Specifically, in the mixed lubrication region, the geometry of the hard piston surface asperity directly affects the wear of soft cylinder bore surface, while the asperities may deform or even degrade when penetrating and sliding against the cylinder bore. So far, there is no suitable method to simulate their coupled evolution. This paper proposed a wear process simulation model considering the real-time interaction between the elasto-plastic deformation of the piston surface asperity, the wear contour of the cylinder bore, and the lubrication condition of the interface. An offline library of the elasto-plastic constitutive behavior of the asperity based on the finite element method (FEM) is established as a part of the simulation model to precisely analyze the deformation and degradation of the asperity and quickly invoke them in the numerical wear process simulation. The simulation and experimental results show that the piston asperity and the cylinder bore contour converge to a steady state after running-in for about 0.5 h. The distribution of the simulated asperity degradation and wear depth is also verified by the experiment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号