首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
震前地震孕育期地表异常增强的电场,通过大气电导率传输到电离层高度.该异常电场通过非稳态局部加热,可以在电离层高度激发声重波.基于该理论,利用一维时变中纬电离层物理模型,模拟了该扰动源对电离层电子密度的影响.结果表明,重力波引起的中性风速度扰动对电离层电子密度分布影响甚微,该机理无法解释震前电离层异常扰动现象.   相似文献   

2.
3.
This paper presents the results of modeling the ionospheric effect of the seismogenic electrostatic field (SEF) seen at the earth’s surface as a perturbation of the vertical atmospheric electrostatic field in the earthquake preparation zone. The SEF distribution at ionospheric altitudes is obtained as an analytical solution of the continuity equation for the electric current density. It is shown that at night, the horizontally large scale SEF can efficiently penetrate into the ionosphere and produce noticeable changes in the horizontal distribution of the F region electron density. The results suggest that the seismogenic electrostatic field could be a possible source for the ionospheric variations observed over Taiwan before the strong Chi Chi earthquake of September 21, 1999.  相似文献   

4.
基于传播矩阵法计算了均匀半空间电离层的反透射系数, 同时解Booker复系数四次方程得到电离层的复折射指数, 分别研究了电离层反射透射系数及折射指数随VLF频段入射电波频率、入射角和地磁倾角、电离层电子浓度及碰撞频率的变化规律. 计算结果表明, 在VLF频段, 垂直电偶极子辐射的横磁(Traverse Magnetic)波更易透射进入电离层, 而水平电偶极子辐射的横电(Traverse Electric) 波易被限制在地-电离层波导内来回反射. 电离层电子密度较低时 (如夜间), 在高纬度地区, 观测到地震电离层VLF异常的概率更大. 当考虑地磁场 的影响时, 电离层将允许地震辐射的超低频(Ultra Low Frequency ,ULF)/甚低频 (Very Low Frequency, VLF)部分的电磁波透射进入电离层, 这一点已有很多卫星观测事实为证, 但其进一步的物理机制尚需深入研究.   相似文献   

5.
A possible cause of large variations in the electron collision frequency could be the effect of strong external electric fields of atmospheric origin. This provides a new opportunity to take measurements of electric fields in the lower ionosphere using remote sensing instruments employing radio wave techniques. It has been proposed the technique for making estimates of strong mesospheric electric field intensities on the lower edge of the ionosphere using MF radar data on the effective electron collision frequency, and the data has been presented. The technique described permits a real-time derivation from MF radar data of changes in mesospheric electric field intensities, and estimates of electric current densities. Our results give proof that the source of strong mesospheric electricity is very likely to be a current source.  相似文献   

6.
VLF电波渗透到卫星高度电离层传播的全波计算   总被引:3,自引:0,他引:3  
考虑斜向地磁场的影响将电离层设为多层水平分层各向异性有耗介质, 利用传播矩阵法求解全波方程, 进而研究分析VLF频段电离层反射系数随电波频率的变化, 电离层中两种特征极化波的折射和极化特性, 两特征波的电磁场水平分量以及坡印廷能流密度随传播高度的变化. 数值计算结果表明, 地—电离层波导中的垂直极化波比平行极化波易渗透进入电离层; 电离层中两种特征极化波可分为左旋和右旋圆极化波, 左旋分支由于D层强吸收作用表现为速衰减模, 而右旋分支表现为可传播模, 在传播过程中电磁波的能量主要存储在磁场中; 电波频率越低, 其在电离层中的传播损耗越小. 由数值模拟结果发现, 卫星监测VLF频段的低频部分及更低频段的水平磁场变化对于发现地震电离层电磁前兆异常可能更为有效.   相似文献   

7.
位于波多黎各的Arecibo非相干雷达可以获得低电离层电子和离子密度, 利用此非相干雷达数据对中纬度低电离层的运动特征进行研究. 得到了电子密度随时间和高度的变化 情况, 结果显著呈现出周日变化特征, 并分析了电子密度随高度的变化规律. 进一步对数据进行频谱分析, 深入研究低电离层电子密度的周日变化效应. 得到电子密度的高度剖面, 发现从F层底部到E层有明显的等离子体沉降. 低电离层的层结构特征及电子密度变化表明, 在该区域还存在不同程度的等离子体扰动, 由此对低电离层的作用因素 进行分析, 认为大气潮汐或声重波可能对低电离层产生扰动, 即低电离层与大气存在一定程度的耦合作用.   相似文献   

8.
The problems of physical explanation and possible mechanisms of the seismo-ionospheric effects formation are under discussion now. There are proposed different mechanisms of such effects, for example, large- and small-scale internal gravity waves (IGWs), atmospheric electric field, electromagnetic fields and emissions. However, the appearance of local large-scale seismo-ionospheric anomalies in Total Electron Content (TEC) is possible to explain only by two mechanisms: an atmospheric electric field and/or small-scale IGWs. In this paper, the simulation results for reproduction of the observed seismo-ionospheric great positive effects in TEC prior to strong Wenchuan earthquake are presented. The obtained results confirm the proposed mechanism of seismo-ionospheric effects formation by the penetration of the seismogenic electric field from the atmosphere into the ionosphere. It is suggested that so great TEC enhancement observed 3 days prior to Wenchuan earthquake could be explained by combined action of seismogenic vertical electric field and IGWs generated by the solar terminator.  相似文献   

9.
大气重力波与电子密度扰动的耦合   总被引:1,自引:1,他引:0  
本文从相互耦合的大气流体方程和双流体等离子体方程出发, 导出了赤道F区大气重力波和电子密度扰动的耦合色散关系, 据此对两者的共振相互作用作了进一步的理论分析。结果表明, 大气重力波可以通过共振耦合将部分能量转换给带电粒子, 为赤道扩展F提供初始电子密度扰动;在这过程中, 等离子体不稳定性对共振条件和共振耦合有着重要的影响。   相似文献   

10.
ULF/ELF electric field perturbations in the ionosphere have been widely observed by the satellites. In this paper, we develop a method of Logarithm Electric Field Intensity (LEFI) to automatically distinguish this kind of disturbances based on the spectrum intensity and its damping exponent with frequency in electromagnetic signals. This method is applied to DEMETER data processing around Chile earthquakes with magnitude larger than 6.0. It is found that 2/3 earthquakes have shown obvious ULF/ELF electric field perturbations in this region. The temporal and spatial distributions of electron density and temperature were compared with that of electric field, which proved the existence of irregularities above epicentral area. Finally, the coupling mechanism of earthquake-ionosphere is discussed based on multi-parameter analysis.  相似文献   

11.
The problem of earthquake prediction has stimulated the search for a correlation between seismic activity and ionospherical anomalies. We found observational evidence of possible earthquake effects in the near-equatorial and low latitude ionosphere; these ionospheric anomalies have been proposed by Gousheva et al. [Gousheva, M., Glavcheva, R., Danov, D., Angelov P., Hristov, P., Influence of earthquakes on the electric field disturbances in the ionosphere on board of the Intercosmos-Bulgaria-1300 satellite. Compt. Rend. Acad. Bulg. Sci. 58 (8) 911–916, 2005a; Gousheva, M., Glavcheva, R., Danov, D., Angelov, P., Hristov, P., Kirov, B., Georgieva, K., Observation from the Intercosmos-Bulgaria-1300 satellite of anomalies associated with seismic activity. In: Poster Proceeding of 2nd International Conference on Recent Advances in Space Technologies: Space in the Service of Society, RAST ‘2005, June 9–11, Istanbul, Turkey, pp. 119–123, 2005b; Gousheva, M., Glavcheva, R., Danov, D., Angelov, P., Hristov, P., Kirov, B., Georgieva, K., Satellite monitoring of anomalous effects in the ionosphere probably related to strong earthquakes. Adv. Space Res. 37 (4), 660–665, 2006]. This paper presents new results from observations of the quasi-static electric field and ion density on board INTERCOSMOS-BULGARIA-1300 satellite in the mid latitude ionosphere above sources of moderate earthquakes. Data from INTERCOSMOS-BULGARIA-1300 satellite and seismic data (World Data Center, Denver, Colorado, USA) for magnetically quiet and medium quiet days are juxtaposed in time-space domain. For satellite’s orbits in the time period 15.09–01.10.1981 an increase in the horizontal and vertical components of the quasi-static electric field and fluctuations of the ion density are observed over zones of forthcoming seismic events. Some similar post effects are observed too. The emphasis of this paper is put on the anomalies which specify the mid latitude ionosphere. The obtained results contain important information because they confirm our previous results for near-equatorial and low latitude regions.  相似文献   

12.
On December 11, 1967 at 05:21 LT, an immense earthquake of magnitude 6.7 struck Koyna, the Indian province of Maharashtra. Its epicenter was located at geographic latitude 17.37°N and longitude 73.75°E with depth of about 3 km. Ground based measurements show variation in the critical frequency of ionospheric F2 layer (foF2) before and after the shock. In the present study the behavior of F2-region of ionosphere has been examined over the equatorial and low latitudinal region ionosphere during the month of December 1967 around the time of Koyna earthquake. For this purpose, the ionospheric data collected with the help of ground-based ionosondes installed at Hyderabad (located close to the earthquake epicenter) Ahmedabad, Trichirapulli, Kodaikanal and Trivendrum have been utilized. The upper and lower bound of Interquartile range (IRQ) are constructed to monitor the variations in foF2 other than day-to-day and diurnal pattern for finding the seismo-ionospheric precursors. Some anomalous electron density variations are observed between post midnight hours to local pre-noon hours at each station. These anomalies are strongly time dependent and appeared a couple of days before the main shock. The period considered in this study comes under the quiet geomagnetic conditions. Hence, the observed anomalies (which are more than the usual day-to-day variability) over all stations are likely to be associated with this imminent earthquake. The possible mechanism to explain these anomalies is the effect of seismogenic electric field generated just above the surface of earth within the earthquake preparation zone well before the earthquake due to emission of radioactive particles and then propagated upward, which perturbs the F-region ionosphere.  相似文献   

13.
Based on observations of two ionosondes at Wuhan and Kokubunji, this paper presents effects of TADs on the daytime mid-latitude ionosphere during the intense geomagnetic storm on March 31, 2001. During a positive ionospheric storm, the start of the enhancement of the foF2 (F2 peak plasma frequency) at Wuhan lags that at Kokubunji by 15 min, which corresponds to the time interval of traveling atmospheric disturbances (TADs’) propagation from Kokubunji to Wuhan. Associated with the uplifting of the hmF2 (height of F2 peak) caused by TADs, it is observed by the two ionosondes that the F1 cusp becomes better developed. Therefore, during a geomagnetic storm, TADs originating from the auroral oval may have a strong influence on the shape of the electron density profile in the F1 region ionosphere at middle latitudes. It is highly likely that TADs are responsible for the evolution of the F1 cusp.  相似文献   

14.
The downward field-aligned current region plays an active role in magnetosphere–ionosphere coupling processes associated with aurora. A quasi-static electric field structure with a downward parallel electric field forms at altitudes between 800 km and 5000 km, accelerating ionospheric electrons upward, away from the auroral ionosphere. Other phenomena including energetic ion conics, electron solitary waves, low-frequency wave activity, and plasma density cavities occur in this region, which also acts as a source region for VLF saucers. Results are presented from high-altitude Cluster observations with particular emphasis on the characteristics and dynamics of quasi-static electric field structures. These, extending up to altitudes of at least 4–5 Earth radii, appear commonly as monopolar or bipolar electric fields. The former occur at sharp boundaries, such as the polar cap boundary whereas the bipolar fields occur at softer boundaries within the plasma sheet. The temporal evolution of quasi-static electric field structures, as captured by the pearls-on-a-string configuration of the Cluster spacecraft, indicates that the formation of electric field structures and of ionospheric plasma density cavities are closely coupled processes. A related feature of the downward current is a broadening of the current sheet with time, possibly related to the depletion process. Preliminary studies of the coupling of electric fields in the downward current region, show that small-scale structures are typically decoupled from the ionosphere, similar to what has been found for the upward current region. However, exceptions are also found where small-scale electric fields couple perfectly between the ionosphere and Cluster altitudes. Recent FAST results indicate that the degree of coupling differs between sheet-like and curved structures, and that it is typically partial. The electric field coupling further depends on the current–voltage relationship, which is highly non-linear in the downward current region, and still unrevealed, as to its specific form.  相似文献   

15.
The equatorial ionosphere and thermosphere constitute a coupled system, with its electro dynamical and plasma physical processes being responsible for a variety of ionospheric phenomena peculiar to the equatorial region. The most important of these phenomena are: the equatorial electrojet (EEJ) current system and its instabilities, the equatorial ionization anomaly (EIA), and the plasma instabilities/irregularities of the night ionosphere (associated with the plasma bubble events – ESF). They constitute the major topics of investigations having both scientific and practical objectives. The tidal wind interaction with the geomagnetic field is responsible for the atmospheric dynamo electric fields, that together with the wind system, drives the major phenomena, under quiet conditions. Drastic modifications of these phenomena can occur due to magnetospheric forcing under solar-, interplanetary- and magnetospheric disturbances. They can also undergo significant modifications due to forcing by atmospheric waves (such as planetary- and atmospheric gravity waves) propagating upward or from extra tropics. This article will focus on the ambient conditions of the ionosphere–thermosphere system and the electro dynamics and plasma instability processes that govern the plasma irregularity generation. Major emphasis is given to problems related to the structuring of the equatorial night ionosphere through plasma bubble/ESF irregularity processes. Specific topics to be covered will include: equatorial electric fields, thermospheric winds, sunset electrodynamic processes, plasma drifts, EEJ plasma instability/irregularity generation, nighttime/post sunset plasma bubble irregularity generation, and very briefly, disturbance electric fields and winds and their effect on the ionization anomaly, the TEC and ESF/plasma bubble irregularities.  相似文献   

16.
The purpose of the present paper is to describe the observations of the variations in the parameters of HF radio waves propagating through the ionosphere when the action of the super typhoon Hagibis on 6–13 October 2019 occurred. The observations have been made with the Harbin Engineering University (the People's Republic of China) multi-frequency multiple path radio system involving the software-defined technology. The action of the super typhoon has been shown to be accompanied by enhanced atmospheric wave activity acting to generate wave processes with periods of 10 to 120 min. Coupling in the atmosphere–upper-atmosphere–ionosphere system has been confirmed to be carried out with atmospheric gravity waves. The ionosphere underwent the greatest impact on those days when the supertyphoon had maximum energy, on 8, 10, and especially 9 October 2019, and when it was found to be in an ~2,500–3,000-km distance range from the propagation path midpoints. Under the action of wave processes, the height of the reflection region was observed to oscillate within the ±(30–90 km) limits. The amplitude of the quasi-periodic variations in the ionospheric F-region electron density was estimated to be 10–12% for periods of ~20 min, and 30–60% for periods of ~60–120 min. The joint action of the dusk terminator and the supertyphoon has been confirmed to enhance wave activity in the ionosphere. Similar effects for the dawn terminator have not been detected.  相似文献   

17.
基于电离层一维仿真加热模型,详细介绍了模型中电子的动量方程、连续性方程、能量方程和各类参量表达式,利用对角矩阵追赶法数值求解电离层F层加热过程,分析了不同时次电子数密度和电子温度的变化,讨论了不同频率和不同功率电波加热的情形.结果表明:当高频电波加热高电离层时,电子温度迅速增加,并很快趋近于饱和状态;电子密度的变化较为迟缓,但在加热过程中其变化幅度却越来越大;电子密度变化量在沿磁场方向上形成空洞和上下稠团两峰一谷构型;频率越大、功率越高的电波加热时,电子密度的变化也越大,但存在一适值频率的电波对电子温度的影响最小.   相似文献   

18.
The measurements of GPS signal delays show that the local areas of increased/decreased Total Electron Content (TEC) of the ionosphere can be observed before strong earthquakes. The main possible cause of these TEC disturbances is the vertical plasma drift under the action of zonal electric field. The spatial pattern of electric potentials for such electric field was proposed. The model calculations were done to investigate the efficiency of the proposed mechanism. The calculation results revealed the agreement with TEC variations observed before strong earthquakes and showed that the equatorial electrojet variations can be considered as precursors of earthquakes.  相似文献   

19.
This paper is focused on unusual nighttime impulsive electron density enhancements that are rarely observed at low latitudes on a wide region of South America, under quiet and medium/high geomagnetic conditions. The phenomenon under investigation is very peculiar because besides being of brief duration, it is characterized by a pronounced compression of the ionosphere. The phenomenon was studied and analyzed using both the F2 layer critical frequency (foF2) and the virtual height of the base of the F region (h′F) values recorded at five ionospheric stations widely distributed in space, namely: Jicamarca (−12.0°, −76.8°, magnetic latitude −2.0°), Peru; Sao Luis (−2.6°, −44.2°, magnetic latitude +6.2°), Cachoeira Paulista (−22.4°, −44.6°, magnetic latitude −13.4°), and São José dos Campos (−23.2°, −45.9°, magnetic latitude −14.1°), Brazil; Tucumán (−26.9°, −65.4°, magnetic latitude −16.8°), Argentina. In a more restricted region over Tucumán, the phenomenon was also investigated by the total electron content (TEC) maps computed by using measurements from 12 GPS receivers. A detailed analysis of isoheight ionosonde plots suggests that traveling ionospheric disturbances (TIDs) caused by gravity wave (GW) propagation could play a significant role in causing the phenomenon both for quiet and for medium/high geomagnetic activity; in the latter case however a recharging of the fountain effect, due to electric fields penetrating from the magnetosphere, joins the TID propagation and plays an as much significant role in causing impulsive electron density enhancements.  相似文献   

20.
Impulsive electric fields appearing on all four frequency channels of the Pioneer Venus electric field detector in the night ionosphere of Venus are characteristic of lightning generated signals. Based on our knowledge of the electron density and magnetic field in the Venus ionosphere, we suggest that lightning waves could be partially transmitted upwards into the ionosphere. The leakage of these lightning waves into the ionosphere on encountering electron density holes may be treated as reradiation into the ionosphere from the hole. Since this radiation pattern is frequency dependent, we should not expect to see all frequency components for every lightning stroke observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号