首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Various types of organic compounds have been detected in Jupiter, Titan, and cometary coma. It is probable that organic compounds were formed in primitive Earth and Mars atmospheres. Cosmic rays and solar UV are believed to be two major energy sources for organic formation in space. We examined energetics of organic formation in simulated planetary atmospheres. Gas mixtures including a C-source (carbon monoxide or methane) and a N-source (nitrogen or ammonia) was irradiated with the followings: High energy protons or electrons from accelerators, gamma-rays from 60Co, UV light from a deuterium lamp, and soft X-rays or UV light from an electron synchrotron. Amino acids were detected in the products of particles, gamma-rays and soft X-rays irradiation from each gas mixture examined. UV light gave, however, no amino acid precursors in the gas mixture of carbon monoxide, nitrogen and nitrogen. It gave only a trace of them in the gas mixture of carbon monoxide, ammonia and water or that of methane, nitrogen and water. Yield of amino acid precursors by photons greatly depended on their wavelength. These results suggest that nitrogen-containing organic compounds like amino acid precursors were formed chiefly with high energy particles, not UV photons, in Titan or primitive Earth/Mars atmospheres where ammonia is not available as a predominant N-source.  相似文献   

2.
Some results, recently obtained from laboratory experiments of ion irradiation of ice mixtures containing H, C, N, and O, are here summarized. They are relevant to the formation and evolution of complex organics on interstellar dust, comets and other small bodies in the external Solar System. In particular the formation of CN-bearing species is discussed. Interstellar dust incorporated into primitive Solar System bodies and subsequently delivered to the early Earth, may have contributed to the origin of life. The delivery of CN-bearing species seems to have been necessary because molecules containing the cyanogen bond are difficult to be produced in an environment that is not strongly reducing as that of the early Earth probably was. Moreover we report on an ongoing research program concerning the interaction between refractory materials produced by ion irradiation of simple ices and biological materials (amino acids, proteins, cells).  相似文献   

3.
It is suggested that primitive Mars had somehow similar environments as primitive Earth. If life was born on the primitive earth using organic compounds which were produced from the early Earth environment, the same types of organic compounds were also formed on primitive Mars. Such organic compounds might have been preserved on Mars still now. We are studying possible organic formation on primitive and present Mars. A gaseous mixture of CO2, CO, N2 and H2O with various mixing ratios were irradiated with high energy protons (major components of cosmic rays). Hydrogen cyanide and formaldehyde were detected among volatile products, and yellow-brown-colored water-soluble non-volatile substances were produced, which gave amino acids after acid-hydrolysis. Major part of "amino acid precursors" were not simple molecules like aminonitriles, but complex compounds which eluted earlier than free amino acids in cation-exchange HPLC. These organic compounds should be major targets in the future Mars mission. Strategy for the detection of the complex organics on Mars will be discussed.  相似文献   

4.
Comets and life.     
Some of the chemical species which have been detected in comets include H2O, HCN, CH3CN, CO, CO2, NH3, CS, C2 and C3. All of these have also been detected in the interstellar medium, indicating a probable relationship between interstellar dust and gas clouds and comets. Laboratory experiments carried out with different mixtures of these molecules give rise to the formation of the biochemical compounds which are necessary for life, such as amino acids, purines, pyrimidines, monosaccharides, etc. However, in spite of suggestions to the contrary, the presence of life in comets is unlikely. On the other hand, the capture of cometary matter by the primitive Earth is considered essential for the development of life on this planet. The amount of cometary carbon-containing matter captured by the Earth, as calculated by different authors, is several times larger than the total amount of organic matter present in the biosphere (10(18)g). The major classes of reactions which were probably involved in the formation of key biochemical compounds are discussed. Our tentative conclusions are that: 1) comets played a predominant role in the emergence of life on our planet, and 2) they are the cosmic connection with extraterrestrial life.  相似文献   

5.
A wide variety of organic compounds, which are not simple organics but also complex organics, have been found in planets and comets. We reported that complex organics was formed in simulated planetary atmospheres by the action of high energy particles. Here we characterized the experimental products by using chromatographic and mass spectrometric techniques. A gaseous mixture of CO, N2 and H2O was irradiated with high energy protons (major components of cosmic rays). Water-soluble non-volatile substances, which gave amino acids after acid-hydrolysis, were characterized by HPLC and mass spectrometry. Major part of the products were complex compounds with molecular weight of several hundreds. Amino acid precursors were produced even when no water was incorporated with the starting materials. It was suggested that complex molecules including amino acid precursors were formed not in solution from simple molecules like HCN, but directly in gaseous phase.  相似文献   

6.
A comet nucleus considered as an aggregate of interstellar dust would produce a mist of very finely divided (radius ~ 0.01 μm) particles of carbon and metal oxides accompanying the larger dust grains. These small particles which are very abundant in the interstellar dust size spectrum would provide substantial physical effects because of their large surface area. They may show up strongly in particle detectors on the Halley probes. A strong basis for serious consideration of these particles comes from the other evidence that interstellar dust grains are the building blocks of comets; e.g. (1) the explanation of the “missing” carbon in comets; (2) The S2 molecule detection which suggests that the comet solid ice materials have been previously subjected to ultraviolet radiation (as are interstellar grains) before aggregation into the comet; (3) the predicted dust to gas ratio.  相似文献   

7.
Simulated planetary atmospheres (mixtures of simple gases) were irradiated with high energy particles to simulate an action of cosmic rays. When a mixture of carbon monoxide, nitrogen and water was irradiated with 2.8-40 MeV protons, a wide variety of bioorganic compounds including amino acids, imidazole, and uracil were identified in the products. The amount of amino acids was proportional to the energy deposit to the system. Various kinds of simulated planetary atmospheres, such as "Titan type" and "Jovian type", were also irradiated with high energy protons, and gave amino acids in the hydrolyzed products. Since cosmic rays are a universal energy source in space, it was suggested that formation of bioorganic compounds in planetary atmospheres is inevitable in the course of cosmic evolution.  相似文献   

8.
The evidence that living organisms were already extant on the earth almost 4 Gyr ago and that early bombardment by comets and asteroids created a hostile environment up to about this time has revived the question of how it was possible for prebiotic chemical evolution to have provided the necessary ingredients for life to have developed in the short intervening time. The actual bracketed available temporal space is no more than 0.5 Gyr and probably much less. Was this sufficient time for an earth-based source of the first simple organic precursor molecules to have led to the level of the prokaryotic cell? If not, then the difficulty would be resolved if the ancient earth was impregnated by organic molecular seed from outer space. Curiously, it seems that the most likely source of such seeds was the same a one of the sources of the hostile enviroment, namely the comets which bombarded the earth. With the knowledge of comets gained by the space missions it has become clear that a very large fraction of the chemical composition of comet nuclei consists of quite complex organic molecules. Furthermore it has been demonstrated that comets consist of very fluffy aggregates of interstellar dust whose chemistry derives from photoprocessing of simple ice mixtures in space. Thus, the ultimate source of organics in comets comes from the chemical evolution of interstellar dust. An important and critical justification for assuming that interstellar dust is the ultimate source of prebiotic molecular insertion on the earth is the proof that comets are extremely fluffy aggregates, which have the possibility of breaking up into finely divided fragments when the comet impacts the earth's atmosphere. In the following we will summarize the properties of interstellar dust and the chemical and morphological structure of comets indicated by the most recent interpretations of comet observations. It will be shown that the suitable condition for comets having provided abundant prebiotic molecules as well as the water in which they could have further evolved are consistent with theories of the early earth environment.  相似文献   

9.
Chemical evolution of primitive solar system bodies.   总被引:1,自引:0,他引:1  
In this paper we summarize some of the most salient observations made recently on the organic molecules and other compounds of the biogenic elements present in the interstellar medium and in the primitive bodies of the solar system. They include the discovery of the first phosphorus molecular species in dense interstellar clouds, the presence of complex organic ions in the dust and gas phase of Halley's coma, the finding of unusual, probably presolar, deuterium-hydrogen ratios in the amino acids of carbonaceous chondrites, and new developments on the chemical evolution of Titan, the primitive Earth, and early Mars. Some of the outstanding problems concerning the synthesis of organic molecules on different cosmic bodies are also discussed from an exobiological perspective.  相似文献   

10.
The possibility that the organic molecules that have been found near comets could have formed by UV photolysis of interstellar ices was investigated by simulating this process in the laboratory. It is found that oxygen rich organics containing C-OH, C-H and C=O groups are readily produced in this way. These results indicate that part of the organic material in comets may have formed by UV irradiation of ices, either in the pre-solar nebula or in the interstellar phase.  相似文献   

11.
The principal observational properties of silicate core-organic refractory mantle interstellar dust grains in the infrared at 3.4 microns and at 10 microns and 20 microns are discussed in terms of the cyclic evolution of particles forming in stellar atmospheres and undergoing subsequent accretion, photoprocessing and destruction (erosion). Laboratory plus space emulation of the photoprocessing of laboratory analog ices and refractories are discussed. The aggregated interstellar dust model of comets is summarized. The same properties required to explain the temperature and infrared properties of comet coma dust are shown to be needed to account for the infrared silicate and continuum emission of the beta Pictoris disk as produced by a cloud of comets orbiting the star.  相似文献   

12.
Carbonaceous chondrites, a class of primitive meteorite, have long been known to contain their complement of carbon largely in the form of organic, i.e., hydrocarbon-related, matter. Both discrete organic compounds and an insoluble, macromolecular material are present. Several characteristics of these materials provide evidence for their abiotic origin. The principal formation hypotheses have invoked chemistry occurring either in the solar nebula or on the parent body. However, recent stable isotope analyses of the meteorite carboxylic acids and amino acids indicate that they may be related to interstellar cloud compounds. These results suggest a formation scheme in which interstellar compounds were incorporated into the parent body and subsequently converted to the present suite of meteorite organics by the hydrothermal process believed to have formed the clay minerals of the meteorite matrix.  相似文献   

13.
During the last three decades major advances have been made in our understanding of the formation of carbon compounds in the universe and of the occurence of processes of chemical evolution. 1) Carbon and other biogenic elements (C,H,N,O,S and P) are some of the most abundant in the universe. 2) The interstellar medium has been found to contain a diversity of molecules of these elements. 3) Some of these molecules have also been found in comets which are considered the most primordial bodies of the solar system. 4) The atmospheres of the outer planets and their satellites, for example, Titan, are actively involved in the formation of organic compounds which are the precursors of biochemical molecules. 5) Some of these biochemical molecules, such as amino acids, purines and pyrimidines, have been found in carbonaceous chondrites. 6) Laboratory experiments have shown that most of the monomers and oligomers necessary for life can be synthesized under hypothesized but plausible primitive Earth conditions from compounds found in the above cosmic bodies. 7) It appears that the primitive Earth had the necessary and sufficient conditions to allow the chemical synthesis of biomacromolecules and to permit the processes required for the emergence of life on our planet. 8) It is unlikely that the emergence of life occurred in any other body of the solar system, although the examination of the Jovian satellite Europa may provide important clues about the constraints of this evolutionary process. Some of the fundamental principles of chemical evolution are briefly discussed.  相似文献   

14.
Molecular elemental and isotopic abundances of comets provide sensitive diagnostics for models of the primitive solar nebula. New measurements of the N2, NH and NH2 abundances in comets together with the in situ Giotto mass spectrometer and dust analyzer data provide new constraints for models of the comet forming environment in the solar nebula. An inventory of nitrogen-containing species in comet Halley indicates that NH3 and CN are the dominant N carriers observed in the coma gas. The elemental nitrogen abundance in the gas component of the coma is found to be depleted by a factor approximately 75 relative to the solar photosphere. Combined with the Giotto dust analyzer results for the coma dust component, we find for comet Halley Ngas + dust approximately 1/6 the solar value. The measurement of the CN carbon isotope ratio from the bulk coma gas and dust in comet Halley indicates a significantly lower value, 12C/13C = 65 +/- 9 than the solar system value of 89 +/- 2. Because the dominant CN carrier species in comets remains unidentified, it is not yet possible to attribute the low isotope ratio predominantly to the bulk gas or dust components. The large chemical and isotopic inhomogeneities discovered in the Halley dust particles on 1 mu scales are indicative of preserved circumstellar grains which survived processing in the interstellar clouds, and may be related to the presolar silicon carbide, diamond and graphite grains recently discovered in carbonaceous chondrites. Less than 0.1% of the bulk mass in the primitive meteorites studied consists of these cosmically important grains. A larger mass fraction (approximately 5%) of chemically heterogeneous organic grains is found in the nucleus of comet Halley. The isotopic anomalies discovered in the PUMA 1 Giotto data in comet Halley are probably also attributable to preserved circumstellar grains. Thus the extent of grain processing in the interstellar environment is much less than predicted by interstellar grain models, and a significant fraction of comet nuclei (approximately 5%) may be in the form of preserved circumstellar matter. Comet nuclei probably formed in much more benign environments than primitive meteorites.  相似文献   

15.
We present the photochemical and thermal evolution of both non-polar and polar ices representative of interstellar and pre-cometary grains. Ultraviolet photolysis of the non-polar ices comprised of O2, N2, and CO produces CO2, N2O, O3, CO3, HCO, H2CO, and possibly NO and NO2. When polar ice analogs (comprised of H2O, CH3OH, CO, and NH3) are exposed to UV radiation, simple molecules are formed including: H2, H2CO, CO2, CO, CH4, and HCO (the formyl radical). Warming produces moderately complex species such as CH3CH2OH (ethanol), HC(=O)NH2 (formamide), CH3C(=O)NH2 (acetamide), R-CN and/or R-NC (nitriles and/or isonitriles). Several of these are already known to be in the interstellar medium, and their presence indicates the importance of grain processing. Infrared spectroscopy, 1H and 13C nuclear magnetic resonance (NMR) spectroscopy, and gas chromatography-mass spectrometry demonstrate that after warming to room temperature what remains is an organic residue composed primarily of hexamethylenetetramine (HMT, C6H12N4) and other complex organics including the amides above and polyoxymethylene (POM) and its derivatives. The formation of these organic species from simple starting mixtures under conditions germane to astrochemistry may have important implications for the organic chemistry of interstellar ice grains, comets and the origins of life.  相似文献   

16.
Mixtures of molecular nitrogen and methane have been identified in numerous outer Solar Systemices including the icy surfaces of Pluto and Triton. We have simulated the interaction of ionizing radiation in the Solar System by carrying out a radiolysis experiment on a methane – molecular nitrogen ice mixture with energetic electrons. We have identified the hydrogen cyanide molecule as the most prominent carbon–nitrogen-bearing reaction product formed. Upon warming the irradiated sample, we followed for the first time the kinetics and temporal evolution of the underlying acid–base chemistry which resulted in the formation of the cyanide ion from hydrogen cyanide. On the surfaces of Triton and Pluto and on comets in Oort’s cloud this sort of complex chemistry is likely to occur. In particular, hydrogen cyanide can be produced in low temperature environments (Oort cloud comets) and may be converted into cyanide ions once the comets reach the warmer regions of the Solar System.  相似文献   

17.
Titan's atmosphere contains a mixture of nitrogen, methane, argon, hydrogen, simple hydrocarbons and nitriles, carbon monoxide, and carbon dioxide. Sources of nitrogen may be as a product of the photodissociation of ammonia or trapped in the ices that formed the satellite. Reasons for the abundance of deuterium are examined and its association with nitrogen on Titan is explained.  相似文献   

18.
陨石、流星体与小行星及彗星的演化关系   总被引:1,自引:0,他引:1  
小行星、彗星和流星体(meteoroid)都是绕太阳公转的小天体,它们只是在轨道特性和物理-化学性质方面有所不同,流星体泛指在行星际空间运行的、质量从10~(-16)克微流星体或微尘到10~8克的所有小天体,当它们闯入地球大气时与大气剧烈碰撞而产生发光的流星(meteor)现象,落到地面的流星体残余则称为陨石或陨星(meteorite)。  相似文献   

19.
Eight characteristics of the unique suite of amino acids and hydroxy acids found in the Murchison meteorite can be recognized on the basis of detailed molecular and isotopic analyses. The marked structural correspondence between the alpha-amino acids and alpha-hydroxy acids and the high deuterium/hydrogen ratio argue persuasively for their formation by aqueous phase Strecker reactions in the meteorite parent body from presolar, i.e., interstellar, aldehydes, ketones, ammonia, and hydrogen cyanide. The characteristics of the meteoritic suite of amino acids and hydroxy acids are briefly enumerated and discussed with regard to their consonance with this interstellar-parent body formation hypothesis. The hypothesis has interesting implications for the organic composition of both the primitive parent body and the presolar nebula.  相似文献   

20.
The irradiation of grains and/or ices by particles from solar or stellar winds, as well as cosmic rays, induces the synthesis of molecular species. We have shown by in-situ infrared spectroscopy of irradiated samples that this chemistry may be responsible for the presence of organic compounds in a large variety of astrophysical sites such as: lunar and asteroidal regoliths, cometary nucleus, rings and satellites of outer planets, circumstellar shells, interstellar clouds. We present our experimental results concerning the nature and efficiency of C and N irradiation chemistries, and give plausible astrophysical implications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号