首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 365 毫秒
1.
The observations of X-ray Nova in Musca (GRS1124-684) by two coded mask telescopes on board GRANAT observatory provided spectral data in broad 3 – 1300 keV band. During these observations, spanned over a year, the Nova was detected in a three apparently different spectral states, corresponding to different epochs of the soft X-ray light curve: (1) A spectrum with two distinct components (soft, below 8 keV and hard power law tail with slope 2.5, detected up to 300 keV). The soft emission changed gradually with characteristic decay time around 30 days, while power law component exhibited strong variability on the time scales of several hours and decreased much more slowly. (2) A soft spectrum (without hard power law tail), observed during the “kick” of the soft X-ray light curve. (3) A hard power law spectrum with slope 2.2. Thus, while the 3 – 300 keV luminosity decreased by more than order of magnitude, the source passed through all spectral states known for galactic black hole candidates (Cyg X-1, GX339-4, 1E1740.7-2942, GRS1758-258 etc.).

On January 20–21 1991, the SIGMA telescope aboard GRANAT detected a relatively narrow variable emission line near 500 keV (Fig.1,2) with net flux ≈ 6 · 10−3 phot/s/cm2, most probably related with electron-positron annihilation processes, occurring in the source /1–4/. Additional excess above power law continuum, centered around 200 keV, was found during this observation.  相似文献   


2.
The launch in December 1989, of SIGMA, one of the main devices aboard the GRANAT spacecraft, has provided high-energy astronomers for the first time with a telescope whose imaging properties in the soft γ-ray regime match those of instruments operating in the hard X-ray band. Having examined 300 celestial fields during more than two years of successful in-orbit operations, this coded-aperture telescope, sensitive to radiation in the energy range 35 keV to 1.3 MeV, has succeeded both in disentangling severe source confusion problems and in providing firm identifications and reliable spectra of sources at soft γ-ray wavelengths. A selection of the salient scientific results obtained so far is presented, with intent to emphasize the unique contribution of a coded-mask telescope able to perform accurate images of the sky in the soft γ-ray domain.  相似文献   

3.
Swift is a first-of-its-kind multiwavelength transient observatory for γ-ray burst astronomy. It has the optimum capabilities for the next breakthroughs in determining the origin of γ-ray bursts and their afterglows, as well as for using bursts to probe the early Universe. Swift will also monitor the soft gamma repeaters and perform the first sensitive hard X-ray survey of the sky. The mission is being developed by an international collaboration and consists of three instruments, the Burst Alert Telescope (BAT), the X-ray Telescope (XRT), and the Ultraviolet and Optical Telescope (UVOT). The BAT, a wide-field γ-ray detector, will detect >100 γ-ray bursts per year with a sensitivity 5× that of BATSE. The sensitive narrow-field XRT and UVOT will be autonomously slewed to the burst location within 20–70 s to determine 0.3–5.0″ positions and perform optical, UV, and X-ray spectrophotometry. Strong education/public outreach and follow-up programs will help to engage the public and the astronomical community. Swift launch is planned for late 2004.  相似文献   

4.
After more than two years of operation, the imaging γ-ray SIGMA telescope has accumulated several days of observation toward well known X-ray binaries. Four bright sources falling in this category have been detected so far: The pulsar GX 1+4 near the center of our galaxy, the stellar wind accreting system 4U 1700-377, and the black hole candidates Cygnus X-1 and GX 339-4. Moreover, SIGMA have observed three transients sources, which turned out to be also hard X-ray sources : The burster KS 1731-260, Tra X-1, and the Musca Nova. The properties of these systems in the SIGMA domain will be reviewed and a spectral distinction between black holes and neutron stars will be sketched.  相似文献   

5.
The SIGMA telescope realizes images of the sky in the hard X-ray domain (40 keV–1.3 MeV) through a coded mask system. The extragalactic study was one of the main objectives and has brought new results in our knowledge of the Active Galactic Nuclei behavior at high energy.

In fact, the variability is the most important factor as all these objects have been showed to display strong evolution in intensity or/and spectral shape. Moreover, the discovery of a new hard X-ray source close to 3C273 and probably strongly absorbed below 40–50 keV could have many consequences in the extragalactic field.  相似文献   


6.
We discuss a class of microwave flares whose source regions exhibit a distinctive spatial configuration; the primaryenergy release in these flares results from the interaction between emerging magnetic flux and an existing overlying region. Such events typically exhibit radio, X-ray and EUV emission at the main flare site (the site of interaction) and in addition radio emission at a remote site up to 1 × 105 km away in another active region. We have identified and studied more than a dozen microwave flares in this class, in order to arrive at some general conclusions on reconnection and energy release in such solar flares. Typically, these flares show a gradual rise showing many subsidiary peaks in both radio and hard X-ray light curves with a quasi-oscillatory nature with periods of 5–6 seconds, a bright compact X-ray & EUV emitting loop in the main flare source, a delay of the radio emission from the remote source relative to the main X-ray-emitting source. The magnetic field in the main flare site changes sharply at the time of the flare, and the remote site appears to be magnetically connected to the main flare site.  相似文献   

7.
The black hole candidate Cygnus X-1 was observed in the hard X ray - soft γ ray energy range by the MISO telescope on two different occasions: in September 1979 and May 1980. We have measured two hard X-ray states of the source: in 1979 the observed spectrum confirms the superlow state measured in the same period by the HEAO-3 satellite, while in 1980 the MISO X-ray data are consistent with the so called low state of Cygnus X-1. In both occasions, no γ -ray excess has been observed above 200 KeV.  相似文献   

8.
We present preliminary results from analyses of hard X-ray and optical observations of a soft X-ray selected sample. We created a small but complete sample with 20 of the softest and brightest objects with low Galactic absorption from the ROSAT bright soft X-ray selected radio-quiet AGN sample. This sample consists of 10 narrow-line Seyfert 1 galaxies and 10 broad-line Seyfert galaxies. We analyze ASCA data in the 0.6–10 keV band and optical spectra from ground-based telescopes. We investigate the photon indices in the hard X-ray band, soft excesses in the ASCA band, and optical emission line properties. The photon indices in the 2–10 keV band are nominal for both narrow-line Seyfert 1 galaxies and broad-line Seyfert 1 galaxies in each class compared with other heterogeneous samples. All of the narrow-line Seyfert 1 galaxies show soft excesses, but this component seems to be less significant for broad-line Seyfert 1 galaxies. There seems to be a trend of steeper X-ray spectra to be accompanied by narrower Hβ for narrow-line Seyfert 1 galaxies, but this is not extended to the larger velocity width regime of broad-line Seyfert 1 galaxies, and no clear trend is seen among them.  相似文献   

9.
Hard X-ray and high frequency decimetric type III radio bursts have been observed in association with the soft X-raysolar flare (GOES class M 6.1) on 4 April 2002 (1532 UT). The flare apparently occurred 6 degrees behind the east limb of the Sun in the active region NOAA 9898. Hard X-ray spectra and images were obtained by the X-ray imager on RHESSI during the impulsive phase of the flare. The Brazilian Solar Spectroscope and Ondrejov Radio Telescopes recorded type III bursts in 800–1400 MHz range in association with the flare. The images of the 3–6, 6–12, 12–25, and 25–50 keV X-ray sources, obtained simultaneously by RHESSI during the early impulsive phase of the flare, show that all the four X-ray sources were essentially at the same location well above the limb of the Sun. During the early impulsive phase, the X-ray spectrum over 8–30 keV range was consistent with a power law with a negative exponent of 6. The radio spectra show drifting radio structures with emission in a relatively narrow (Δf ≤ 200 MHz) frequency range indicating injection of energetic electrons into a plasmoid which is slowly drifting upwards in the corona.  相似文献   

10.
Dedicated X-ray, optical and radio observations aimed at the identification of the bright γ-ray source 2CG195+04 (GEMINGA) are presented. A very promising candidate is found and its properties are discussed in the context of possible astrophysical scenarios.  相似文献   

11.
We first briefly review the current trend in the studies of coronal mass ejections (CMEs), then summarize some recent efforts in understanding the CME initiation. Emphasis has been put on the studies of Earth-directed CMEs whose associated surface activity and large scale magnetic source have been well identified. The data analysis by combining the MDI full disc magnetograms, vector magnetograms of active regions, EUV waves and dimmings, non-thermal radio sources, and the SOHO LASCO observations has shed new light in understanding the CME magnetism. However, the current studies seem to invoke new observations in a few aspects: (1) The observations which enable us to trace CMEs from the earliest associated surface activity to its initial acceleration and key development in the low corona in the height of 1–3 R; (2) The imaging spectroscopic observations which can be used to diagnose the early plasma outflow and the line-of-sight velocity in understanding the kinematics of CMEs; (3) The accurate timing from primary magnetic energy release, manifested by chromospheric activity, non-thermal radio bursts, and EUV, X-ray and γ-ray emissions, to the CME initiation, early acceleration and propagation, and the consequences in the interplanetary space and magnetosphere. The Kuafu Mission will meet the basic requirement for the new observations in CME initiation studies and serve as a monitor of space weather of the Sun–Earth system.  相似文献   

12.
We investigated properties of four isolated giant elliptical galaxies with extended X-ray halo using ASCA data. The derived size of X-ray halo, X-ray luminosity, and gravitational mass of the dark halo are unusually large those of X-ray halo of a single galaxy, but are typical for X-ray halos of groups and poor clusters of galaxies. The measured temperatures and abundances of the X-ray halo gas in these galaxies are also similar to those of the groups and poor clusters. Based on these results we identified these galaxies as “isolated X-ray overluminous elliptical galaxy” (IOLEG). The radial profiles of dark halo in these objects were derived from X-ray data. It is found that some are similar to those of compact groups while others are the same as those of normal ellipticals. The dark halos of lOLEGs are thus indistinguishable from those of groups (and poor clusters), which appears to be consistent with a widely believed idea that lOLEGs are a product of dynamical evolution of a compact group. However, mass-to-light ratios of IOLEGs (M200/LB  100–1000) are far greater than those of Hickson compact groups M200/LB  40–60). Since it is hard to consider that total optical luminosity of a compact group decreases by an order of magnitude in the course of dynamical evolution, such difference in the observed mass-to-light ratio between IOLEGs and Hickson compact groups strongly suggests that most IOLEGs have not evolved from compact groups which are observed at present.  相似文献   

13.
Preliminary observing achievements by the Super Soft X-ray Detector and the γ-ray Detector in the fields of cosmic gamma-ray bursts, solar X-ray, bursts and cosmic X-ray/γ-ray background radiation are summarized. The detectors are aboard the spacecraft Shenzhou-2 that was launched on 2001 January 10. The scientific mission and general situation of the instruments are briefly described.  相似文献   

14.
The results obtained on cosmic gamma-ray bursts over the last several years are reviewed and compared with the older “historical” results. Fine time resolution measurements of burster light curves continue to reveal structure at the millisecond and sub-millisecond level, suggesting a compact object origin. Similarly, the evolution of the low energy X-ray spectra of bursts towards shapes consistent with 1–2 keV blackbodies may be interpreted in terms of a neutron star origin, as can the continuing detection of absorption and emission features. The statistical evidence, however, argues strongly for an isotropic distribution which has been completely sampled. To reconcile this with galactic neutron stars requires the assumption that they are Population II objects. Counterpart searches have evolved to the point where they may be carried out within days of an event, and a soft X-ray source has now been detected in the error box of one recent burst.  相似文献   

15.
On March 2003, IBIS, the γ-ray imager on board the INTEGRAL satellite, detected an outburst from a new source, IGR J17464-3213, that turned out to be an HEAO-1 transient, namely H1743-322. The spectral and temporal evolutions of the source were observed by INTEGRAL in different periods. Also RXTE observed the source for the first time on 2003 March 29 during a PCA Galactic bulge scan. The source flux decayed below the RXTE PCA sensitivity limit in November 2003, then in April 2004 it was again detected by INTEGRAL. On July 3, 2004 the source was again detected by RXTE/PCA at a 2–10 keV intensity of 16 mCrab and on July 7, reached 69 mCrab. Recently, a new outburst was observed on August 2005. We briefly summarise here the behaviour of the source observed by INTEGRAL from March 2003 to August 2005. The new outbursts of the source and the analysis of all the data collected (now public) give a global view of the spectral and time behaviour of this X-ray transient.  相似文献   

16.
We summarize the analysis of a new PG 1159 star, i.e., a hydrogen deficient pre-white dwarf detected in the ROSAT XRT all sky survey /1/. The X-ray source RX J2117.1+3412 is relatively faint (≈0.33 cnt s−1) and was selected for optical identification on the basis of its extreme X-ray softness. With V = 13.2, the counterpart of the X-ray source is in the optical the second brightest member of the PG1159 class. CCD imagery reveals that the star is surrounded by an old highly excited planetary nebula of faint surface brightness. Optical line profiles of HeII, CIV, and OVI and the overall optical and ROSAT PSPC (0.1–2.4 keV) energy distributions are compared to predictions of NLTE model atmospheres. We find an excellent agreement between the atmospheric parameters derived from optical and soft X-ray data. The effective temperature of the star is extremely high (150,000 K). Abundances of He, C and O are found to be consistent with those derived in other PG1159 stars whereas the surface gravity is significantly smaller in RXJ2117.1+3412. New optical spectra presented here show the presence of ultra-high excitation lines of O VIII.  相似文献   

17.
A small number of early Be stars exhibit X-ray luminosities intermediate between those typical of early type stars and those radiated by Be/X-ray binaries in the quiescent state. We report on XMM-Newton observations of two such Be stars, HD 161103 and SAO 49725 which were originally discovered in a systematic cross-correlation between the ROSAT all-sky survey and SIMBAD. The new observations confirm the X-ray luminosity detected by ROSAT (LX  1032 erg s−1) and the hardness of their X-ray spectra (thin thermal with kT  8–10 keV or power law with photon index of 1.7) which are both unusual for normal early type stars. We discuss the possible origin of this excess X-ray emission in the light of the models proposed for γ-Cas, magnetic disc-star interaction or accretion onto a compact companion object, neutron star or white dwarf, and compare the properties of these two sources with those of the new massive systems discovered in the XMM- Newton/SSC survey of the Galactic plane.  相似文献   

18.
Narrowband dm-spikes observed in nine intervals during five solar flares in the 1–2 GHz range were analyzed together with the RHESSI and HXRS observations. It was found that the over-frequency integrated radio flux during the spike period is closely related with the hard X-ray bursts (the correlation coefficient was 0.7–0.9) and their time delays after X-rays were 2–14 s, with one exception (March 18, 2003) where the time delay was opposite −15 s. Association of spikes with X-ray spectral characteristics enabled us to divide the spikes into two groups: (a) those observed before the soft X-ray flare maximum and, (b) those observed after this maximum. While for the spikes observed after the flare maximum no systematic spectral characteristics were found, the spikes, observed before the flare maximum were at their beginning associated with relatively hard X-ray spectra and their hardness decreased with time. The RHESSI X-ray sources were compact, only in the March 18, 2003 event an additional X-ray source appeared just at the time of the dm-spikes observation. Fourier transformation of the dynamic spectra of spikes was done to compare their dynamics with the X-ray spectral indices. No correlation between power-law spike and X-ray indices were found. It indicates that the MHD turbulence, if it plays a role, does not represent a strong connection between the spectral characteristics of the dm-spikes and associated X-ray bursts. Furthermore, the results were compared with those obtained by (Aschwanden, M.J., Güdel, M. The coevolution of decimetric millisecond spikes and hard X-ray emission during solar flares. Astrophys. J. 401, 736–753, 1992) for spikes observed on lower radio frequencies. Contrary to their results, no monotonic dependence between time delays and X-ray intensities were found. Finally, the results were discussed using the model of the narrowband dm-spikes and model of electron acceleration in the collapsing magnetic trap.  相似文献   

19.
We propose a jet model for the low/hard state of galactic black-hole X-ray sources which explains the energy spectra from radio to X-rays and a number of timing properties in the X-ray domain such as the time lag spectra, the hardening of the power density spectra and the narrowing of the autocorrelation function with increasing photon energy. The model assumes that (i) there is a magnetic field along the axis of the jet, (ii) the electron density in the jet drops inversely proportional to distance, (iii) the jet is “hotter” near its center than at its periphery, and (iv) the electrons in the jet follow a power-law distribution function. We have performed Monte Carlo simulations of Compton upscattering of soft photons from the accretion disk and have found power-law high-energy spectra with photon-number index in the range 1.5–2 and cutoff at a few hundred keV, power-law time lags versus Fourier frequency with index 0.8, and an increase of the rms amplitude of variability and a narrowing of the autocorrelation function with increasing photon energy as they have been observed in Cygnus X-1. The spectrum at long wavelengths (radio, infrared, optical) is modeled to come from synchrotron radiation of the energetic electrons in the jet. We find flat to inverted radio spectra that extend from the radio up to about the optical band. For magnetic field strengths of the order 105–106 G at the base of the jet, the calculated spectra agree well in slope and flux with the observations.  相似文献   

20.
A summary is given of the presentations at the COSPAR workshop on γ-ray bursts with some personal commentary on the contributions, the SN/GRB connection, and on the role of magnetic fields in γ-ray bursts and their afterglows. Of special interest were the accumulated arguments for strong collimation and associated reduction in the total required energy for γ-ray bursts. Significant discussion was also devoted to the issues associated with iron and metal lines in X-ray spectra. It is important to note that some of the afterglows seem to require ambient densities 1 g cm−3, rather incompatible with a massive star environment. Of associated difficulty is the fact that few, if any, afterglows seem consistent with the r−2 wind expected for a massive star model. There are reasons to think that if γ-ray bursts are associated with supernovae they are of Type Ic. This suggests that any wind present might be rich in carbon and oxygen, not hydrogen or helium. If γ-ray bursts are narrowly collimated, then the burst is only probing a small portion of any wind, perhaps just that time-dependent and isotropic structure directly along the rotation axis. The characteristics of “hypernovae” may be the result of orientation effects in a mildly inhomogeneous set of progenitors, rather than requiring an excessive total energy or luminosity. The recent event GRB 021004 provided a rich photometric and spectroscopic record and perhaps the most direct evidence yet for the association of a specific γ-ray burst with a massive star progenitor. If the magnetic field plays a significant role in launching a relativistic γ-ray burst jet from within a collapsing star, then the magnetic field may also play a role in the propagation, collimation, and stability of that jet within and beyond the star. The magneto-rotational instability (MRI) can operate under conditions of moderate rotation. This means that the MRI will be at work generating strong fields exponentially rapidly even as the disk of material begins to form and makes a transition from a non-Keplerian to quasi-Keplerian flow in the collapsar and related models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号