首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
A fault tolerant control (FTC) design technique against actuator stuck faults is investigated using integral-type sliding mode control (ISMC) with application to spacecraft attitude maneuvering control system. The principle of the proposed FTC scheme is to design an integral-type sliding mode attitude controller using on-line parameter adaptive updating law to compensate for the effects of stuck actuators. This adaptive law also provides both the estimates of the system parameters and external disturbances such that a prior knowledge of the spacecraft inertia or boundedness of disturbances is not required. Moreover, by including the integral feedback term, the designed controller can not only tolerate actuator stuck faults, but also compensate the disturbances with constant components. For the synthesis of controller, the fault time, patterns and values are unknown in advance, as motivated from a practical spacecraft control application. Complete stability and performance analysis are presented and illustrative simulation results of application to a spacecraft show that high precise attitude control with zero steady-error is successfully achieved using various scenarios of stuck failures in actuators.  相似文献   

2.
A model reference adaptive control law is presented for largeangle rotational maneuvers of spacecraft using reaction jets. It isassumed that the various parameters of the spacecraft arecompletely unknown, and unknown but bounded disturbancetorques are acting on the spacecraft. The controller includes adynamic system in the feedback path. Simulation results arepresented to show that fast, large angle rotational maneuvers can beperformed using the adaptive controller in spite of uncertainty inthe system.  相似文献   

3.
为了满足衍射成像系统在解决低轨遥感航天器覆盖范围小、目标重访周期长等问题的同时,而引入的航天器相对位置、姿态控制需求。针对共位衍射航天器相对位置、姿态控制过程中传统推力器带来的羽流污染问题,本文采用电磁推力器和飞轮作为执行器,设计一种基于快速非奇异滑模的轨道控制器和基于PID的姿态控制器。所设计的快速非奇异滑模轨道控制器为共位衍射航天器频繁位置调整提供控制保障,基于PID的姿态控制器能够消除由电磁力耦合产生的电磁干扰力矩。研究结果表明:基于相对轨道动力学方程设计的快速非奇异滑模控制律鲁棒性好、收敛速度快,能够达到两颗共位衍射电磁航天器沿z轴保持在10m相对距离的控制效果。在轨道调整过程中,其姿态能够通过PID算法稳定控制到期望姿态,使衍射成像结构一直保持不变,从而有效完成衍射成像任务。  相似文献   

4.
Adaptive control and stabilization of elastic spacecraft   总被引:1,自引:0,他引:1  
This work treats the question of large angle rotational maneuver and stabilization of an elastic spacecraft (spacecraft-beam-tip body configuration). It is assumed that the parameters of the system are completely unknown. An adaptive control law is derived for the rotational maneuver of the spacecraft. Using the adaptive controller, asymptotically decoupled control of the pitch angle of the space vehicle is accomplished, however this maneuver causes elastic deformation of the beam connecting the orbiter and tip body. For the stabilization of the zero dynamics (flexible dynamics), a stabilizer is designed using elastic mode velocity feedback. In the closed-loop system including the adaptive controller and the stabilizer, reference pitch angle trajectory tracking and vibration suppression are accomplished. Simulation results are presented to show the maneuver capability of the control system  相似文献   

5.
The problem of Earth-pointing attitude control for a spacecraft with magnetic actuators is addressed and a novel approach to the problem is proposed, which guarantees almost global closed loop stability of the desired relative attitude equilibrium for the spacecraft. Precisely, a proportional derivative (PD)-like state feedback control law is employed together with a suitable adaptation mechanism for the controller gain. Simulation results are presented, which illustrate the performance of the proposed control law  相似文献   

6.
挠性航天器的退步直接自适应姿态跟踪控制   总被引:1,自引:0,他引:1  
刘敏  徐世杰  韩潮 《航空学报》2012,33(9):1697-1705
针对参数不确定的挠性航天器姿态跟踪控制问题,提出了一种退步直接自适应控制算法。首先验证了挠性航天器动力学子系统的近似严格正实性,并设计了具有理想控制性能的参考模型;然后对以姿态四元数描述的运动学子系统设计常系数输出反馈中间控制律,使航天器姿态四元数输出渐近跟踪参考模型输出;最后退一步,对具有参数不确定特性的动力学子系统,基于非线性直接自适应控制理论和Lyapunov稳定性理论,设计了退步直接自适应姿态跟踪控制器,并证明了闭环系统的稳定性。仿真结果表明,所提控制方法能有效抑制挠性附件的振动,对挠性航天器的控制是有效的。  相似文献   

7.
A robust sliding-mode control law that deals with spacecraft attitude tracking problems is presented. Two important natural properties related to the spacecraft model of motion are discussed. It is shown that by using these properties and the second method of Lyapunov theory, the system stability in the sliding mode can be easily achieved. The success of the sliding-mode controller and its robustness relating to uncertainties are illustrated by an example of multiaxial attitude tracking maneuvers  相似文献   

8.
大型航天器SGCMG系统基于模糊决策的操纵律设计研究   总被引:2,自引:0,他引:2  
作为航天器制导、导航和控制系统的执行部件,单框架控制力矩陀螺是较为理想的大型航天器姿控系统的选择,但是单框架控制力矩陀螺系统(SGCMG)存在严重的奇异现象,增加了操纵律的设计与开发的难度。本文对SGCMG系统的奇异性进行了分析,利用模糊决策的思想确定了奇异测度,根据奇异测度梯度搜索法设计了基于模糊决策的SGCMG系统操纵律。仿真试验表明该方法有效地保证了系统能够回避可避的奇异状态,为大型航天器操纵律设计提供了新的思路。  相似文献   

9.
胡庆雷  姜博严  石忠 《航空学报》2014,35(1):249-258
针对受干扰的刚体航天器冗余执行器存在故障与控制受限的姿态跟踪控制问题,提出一类基于新型指数形式的非奇异快速滑模面(ENFTSM)与趋近律的姿态容错控制器设计方法。当部分推力器发生故障时,假设剩余推力器具有输出饱和特性且能提供足够推力保证航天器执行任务,相比一般终端滑模控制器,本文设计的控制器不仅能使系统状态以更快的速度到达平衡点,且不需要在线对执行器故障信息进行检测和分离。基于Lyapunov方法证明本文设计的控制器能保证闭环系统稳定,且能有效地抑制外部干扰、控制受限和执行器故障等约束。最后对提出的控制算法进行了数值仿真,其结果表明了该控制器的有效性。  相似文献   

10.
基于新型终端滑模的航天器执行器故障容错姿态控制   总被引:6,自引:2,他引:4  
胡庆雷  姜博严  石忠 《航空学报》2014,35(1):249-258
 针对受干扰的刚体航天器冗余执行器存在故障与控制受限的姿态跟踪控制问题,提出一类基于新型指数形式的非奇异快速滑模面(ENFTSM)与趋近律的姿态容错控制器设计方法。当部分推力器发生故障时,假设剩余推力器具有输出饱和特性且能提供足够推力保证航天器执行任务,相比一般终端滑模控制器,本文设计的控制器不仅能使系统状态以更快的速度到达平衡点,且不需要在线对执行器故障信息进行检测和分离。基于Lyapunov方法证明本文设计的控制器能保证闭环系统稳定,且能有效地抑制外部干扰、控制受限和执行器故障等约束。最后对提出的控制算法进行了数值仿真,其结果表明了该控制器的有效性。  相似文献   

11.
12.
This paper treats the question of attitude maneuver control and elastic mode stabilization of a flexible spacecraft based on adaptive sliding mode theory and active vibration control technique using piezoelectric materials. More precisely, a modified positive position feedback (PPF) scheme is developed to design the PPF compensator gains in a more systematical way to stabilize the vibration modes in the inner loop, in which a cost function is introduced to be minimized by the feedback gains subject to the stability criterion at the same time. Based on adaptive sliding mode control theory, a discontinuous attitude control law is derived to achieve the desired position of the spacecraft, taking explicitly into account the mismatched perturbation and actuator constraints. In the attitude control law, an adaptive mechanism is also embedded such that the unknown upper bound of perturbation is automatically adapted. Once the controlled attitude control system reaches the switching hyperplane, the state variables can be driven into a small bounded region. An additional attractive feature of the attitude control method is that the structure of the controller is independent of the elastic mode dynamics of the spacecraft, since in practice the measurement of flexible modes is not easy or feasible. The proposed control strategy has been implemented on a flexible spacecraft. Both analytical and numerical results are presented to show the theoretical and practical merit of this approach.  相似文献   

13.
The authors describe an experimental study of adaptive pointing and tracking control for flexible spacecraft conducted on a complex ground experiment facility. The algorithm used is based on a multivariable direct model reference adaptive control law. Several experimental validation studies performed using this algorithm for vibration damping and robust regulation are extended by addressing the pointing and tracking problem. As is consistent with an adaptive control framework, the plant is assumed to be poorly known to the extent that only system level knowledge of its dynamics is available. Explicit bounds on the steady-state pointing error are derived as functions of the adaptive controller design parameters. It is shown that good tracking performance can be achieved in an experimental setting by adjusting adaptive controller design weightings according to the guidelines indicated by the analytical expressions for the error  相似文献   

14.
使用变速控制力矩陀螺的航天器鲁棒自适应姿态跟踪控制   总被引:4,自引:1,他引:3  
刘军  韩潮 《航空学报》2008,29(1):159-164
 研究以变速控制力矩陀螺群(VSCMGs)为执行机构的航天器姿态跟踪问题。采用四元数描述姿态, 在姿态误差的描述中引入了现时姿态与期望姿态之间的方向余弦矩阵。考虑执行机构模型参数不确定和有外干扰的情况, 姿态误差动力学方程为多输入多输出(MIMO)的非线性系统。基于Lyapunov理论设计了鲁棒自适应控制器, 运用光滑投影算法避免了估计参数陷入奇异。仿真结果表明, 设计的鲁棒自适应控制律明显地缩小了姿态跟踪误差, 很好地解决了外部环境干扰和执行机构由于安装误差或机械磨损造成的轴承方向未对准的问题。  相似文献   

15.
In this paper, we consider the attitude stabilization problem for a rigid spacecraft with external disturbances. To obtain a better disturbance rejection property, we employ finite-time control techniques. In the absence of disturbances, by employing continuous finite-time control method, a continuous finite-time controller is designed such that the attitude of the rigid spacecraft will converge to the origin in finite time. In the presence of disturbances, by employing terminal sliding mode method, a discontinuous finite-time control law is proposed such that the states will eventually converge to a small region of the origin, which can be rendered as small as desired. Numerical simulation results show the effectiveness of the method.  相似文献   

16.
《中国航空学报》2022,35(9):268-281
This paper addresses a coordinated control problem for Spacecraft Formation Flying (SFF). The distributed followers are required to track and synchronize with the leader spacecraft. By using the feature points in the two-dimensional image space, an integrated 6-degree-of-freedom dynamic model is formulated for spacecraft relative motion. Without sophisticated three-dimensional reconstruction, image features are directly utilized for the controller design. The proposed image-based controller can drive the follower spacecraft in the desired configuration with respect to the leader when the real-time captured images match their reference counterparts. To improve the precision of the formation configuration, the proposed controller employs a coordinated term to reduce the relative distance errors between followers. The uncertainties in the system dynamics are handled by integrating the adaptive technique into the controller, which increases the robustness of the SFF system. The closed-loop system stability is analyzed using the Lyapunov method and algebraic graph theory. A numerical simulation for a given SFF scenario is performed to evaluate the performance of the controller.  相似文献   

17.
执行器故障的挠性航天器姿态滑模容错控制   总被引:1,自引:1,他引:0  
肖冰  胡庆雷  霍星  马广富 《航空学报》2011,32(10):1869-1878
针对挠性航天器执行器卡死与失效故障的姿态稳定控制问题,提出一种改进型滑模容错控制策略.与传统的滑模控制相比,该方法能削弱传统滑模控制中抖振现象对姿态控制精度的影响,且它采用自适应技术在线估计系统中的不确定参数,从而保证控制性能对外部干扰、不确定甚至时变转动惯量具有良好的鲁棒性.该控制器并不需要任何在线或离线的故障信息,...  相似文献   

18.
A new attitude controller is proposed for spacecraft whose actuator has variable input saturation limit. There are three identical flywheels orthogonally mounted on board. Each rotor is driven by a brushless DC motor (BLDCM). Models of spacecraft attitude dynamics and flywheel rotor driving motor electromechanics are discussed in detail. The controller design is similar to saturation limit linear assignment. An auxiliary parameter and a boundary coefficient are imported into the controller to guarantee system stability and improve control performance. A time-varying and state-dependent flywheel output torque saturation limit model is established. Stability of the closed-loop control system and asymptotic convergence of system states are proved via Lyapunov methods and LaSalle invariance principle. Boundedness of the auxiliary parameter ensures that the control objective can be achieved, while the boundary parameter’s value makes a balance between system control performance and flywheel utilization efficiency. Compared with existing controllers, the newly developed controller with variable torque saturation limit can bring smoother control and faster system response. Numerical simulations validate the effectiveness of the controller.  相似文献   

19.
在有向通信拓扑下研究了编队航天器自适应姿态协同控制问题。针对航天器编队飞行系统中存在外部扰动和模型不确定性的情况,通过选取包含相对姿态误差和绝对姿态误差的辅助变量,提出了一种鲁棒自适应控制策略。提出了自适应律估计转动惯量矩阵和扰动上界等未知参数,并且利用Lyapunov稳定性理论分析了闭环系统的渐近稳定性。与滑模控制等传统鲁棒控制不同,所设计的鲁棒自适应控制器是连续的,更便于航天器编队飞行系统的实现。最后通过仿真验证了该控制策略能够实现高精度的编队飞行跟踪控制。  相似文献   

20.
基于反步法的挠性航天器姿态镇定   总被引:3,自引:1,他引:2  
王翔宇  丁世宏  李世华 《航空学报》2011,32(8):1512-1523
利用反步法研究了一类挠性航天器的姿态镇定问题,提出一种基于模态观测器的反步控制设计方案.首先,构造挠性模态观测器对挠性模态变量及其变化率进行观测;其次,将角速度看成虚拟控制器,设计虚拟角速度镇定运动学模型与挠性模态变量组成的子系统;最后,利用反步法设计了一种非线性控制器使得角速度能够跟踪虚拟角速度,从而实现姿态镇定的目...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号