首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 897 毫秒
1.
制作2种 PMMA 微流控芯片,对其微通道内表面参数进行测试。基于电流监测法,设计微流控芯片电渗流检测系统。首先测量光滑微通道电渗流速度,验证了实验的可行性,并可以预测微通道的表面电势;然后对粗糙微通道电渗流进行测量;最后对比分析电场强度、溶液浓度等对光滑和粗糙微通道电渗流的影响。结果表明:(1)不规则粗糙表面微通道电渗流速度随电场强度、溶液浓度的变化规律和光滑表面微通道一致;(2)相对于光滑表面微通道,粗糙表面微通道电渗流速度明显降低;当相对微通道深度为5%时,降低幅度约为23%。(3)随着电场强度或者溶液浓度的增大,粗糙和光滑微通道电渗流速度的差距增大。所用实验方法具有直观、方便和成本低的优点。  相似文献   

2.
液滴已成为微流控技术的重要研究内容。为了精确调控液滴内的微环境,利用微通道矩形长凹槽生成并封裹液滴,并开展了液滴内部流场特性的显微粒子图像测速(Micro-PIV)实验,研究了雷诺数(Re)对液滴形貌、流场速度矢量场特性和剪应力分布的影响。结果表明,当Re=11.1时,液滴内部出现了一个涡胞结构;当Re=33.3时,液滴中心处的流速达到最大值,约为10 μm/s。然而,当Re=44.4时,涡胞消失,平均流速降低。同时,液滴尺寸随Re增加而减小。此外,Re对液滴内部剪应力变化无明显影响,剪应力平均值极低(< 1.5×10-4Pa)。  相似文献   

3.
液滴微流控是微流控领域重要分支,其所涉及的生物流体往往具有非牛顿性质。为深入理解非牛顿性质对液滴生成的影响,配置4种不同流变特性的流体,系统研究流动聚焦微通道中滴流模式下的非牛顿液滴生成。结果表明:与牛顿液滴相比,非牛顿液滴生成表现出更显著的“连珠现象”;不同非牛顿性质对液滴生成的影响截然不同,剪切稀化和弹性效应对液滴尺寸和生成频率的作用相反。液柱颈缩动力学结果显示:单一的剪切稀化效应使得非牛顿液滴液柱颈缩过程与牛顿液滴相似,均只有流动驱动阶段;单一的弹性效应则使得非牛顿液滴液柱颈缩后期出现不同于牛顿流体的毛细驱动阶段;而剪切稀化和弹性效应的共同作用会导致液柱颈缩过程中更显著的毛细驱动阶段和液柱断裂后更显著的“连珠现象”。  相似文献   

4.
基于低密度粒子图像叠加的Micro-PIV速度场测量   总被引:1,自引:1,他引:0       下载免费PDF全文
提出了一种基于低密度粒子图像的微流体粒子图像全场测速技术.经过背景噪声去除、阈值过滤、图像增强等图像预处理过程,获得了高质量的低密度荧光示踪粒子图像.对100对图像进行图像叠加处理,得到了满足互相关算法求解二维速度场的高密度叠加粒子图像.针对宽度为250μm,深60μm的长直微通道开展了覆盖全场不同流体层平面的二维速度测量,并利用多个流体平面的二维速度场实现了微通道内全场速度的构建.研究结果表明:由于图像叠加法去除了像径大但灰度低的背景粒子图像,采用互相关分析能够准确获得分层二维速度场,所构建的全场速度场正确反映了长直微通道内流流场特征.  相似文献   

5.
利用微观粒子图像测速技术(micro-PIV)测量了矩形微管道内低雷诺数下速度矢量场,并以此为基础计算微管道内流体体积流量.微管道水力直径为83μm,横截面深宽比为0.155,长度为17mm.实验中获得雷诺数分别为47、127和215三工况下管道中心水平截面内速度分布.与理论速度剖面比较,管道中心的测量速度值吻合很好,偏差控制在±2%以内.利用中心速度值结合层流解析解计算微管道内平均流速和体积流量.经过误差分析得到该方法测量误差约为3.3%.实验结果表明,利用micro-PIV技术完全可以实现微通道流量的高精度测量.  相似文献   

6.
表面电势是微纳流控芯片中流体流动的重要参数。本文介绍了基于AFM胶体探针技术测量液固界面DLVO力并进一步测量表面电势及表面电荷密度的方法。本文改进了胶体探针制作的技术手段,并提出用双探针法测量胶体探针的弹性系数。在0.1~1mM浓度范围内的NaCl溶液中,测量了硅、二氧化硅和氮化硅液固界面双电层内的DLVO力及表面电势。实验结果表明胶体探针技术可以很好地测量液固界面的DLVO力,尤其对静电力指数变化段非常敏感。通过DLVO力曲线可以间接测量表面电势、表面电荷密度等重要参数,是微纳流动及界面属性测量的有效手段。此外,在不同硅基材料表面的测量结果显示了硅烷醇基密度对表面电势起主导作用,可以通过选用不同硅烷醇基密度的材料来有效调控表面电势,从而在硅基材料制作的微流控芯片中调控电动流动的强弱。  相似文献   

7.
实验研究微尺度射流流场中微细梁发生的振动过程,并提出基于该原理测量微尺度射流速度.实验使用长度56. 2mm、直径约0. 07mm铜丝作为微细梁,使用直径约0. 36mm喷管产生的微尺度射流.使用高速摄影仪观察射流流速在2. 7~27. 3m/s间梁振动的变化.试验结果发现当射流喷嘴对准梁3/5处时,振动过程中振幅随射流速度上升.而当射流喷嘴对准梁的9/10和3/4处时,在高流速下,振幅不随流速上升.使用霍尔传感器和磁铁测量梁的振动,当喷嘴对准梁的3/4处,霍尔传感器输出电压有效值随射流流速线性增长.但在其他位置,由于磁铁改变了梁的均匀结构,振动随流速的变化不规律.  相似文献   

8.
过氧化氢-煤油火箭发动机喷流红外辐射亮度的精确测量   总被引:1,自引:0,他引:1  
姿轨控火箭发动机喷流红外辐射特性的定量测量,是飞行器突防效能研究以及喷流流场数值模拟计算模型验证中的一个关键环节。为定量研究火箭发动机喷流红外辐射场分布,对某型过氧化氢-煤油小火箭发动机进行了喷流红外辐射特性测量实验。使用的制冷型中波红外相机波段为3.7~4.8 μm,该相机探测阵元平均噪声等效温差为16 mK,输出16 bits信号,具有高灵敏度和大动态范围。通过对红外相机的黑体辐射定标,并对定标误差进行分析,反演所测灰度值图像,在与喷流垂直方向得到中波红外波段的喷流辐射亮度分布。测量结果表明,小火箭发动机喷流中马赫盘结构位置清晰,喷流在中波红外波段的峰值辐射亮度为184 W/(m2·sr),辐射测量精度为12 W/(m2·sr)。  相似文献   

9.
研究了圆管反应器中四束侧向对撞射流与轴向流形成的混合流动.应用激光粒子散射成像测量了侧向分散相在混合流中的浓度场分布,得到了不同的浓度分布图形随侧向流与轴向流速比关系,揭示了内在有规律的独特的浓度分布结构.  相似文献   

10.
颗粒态物质通常以分形聚集形式存在,如碳烟、气溶胶和灰尘。颗粒分形聚集体辐射特性对研究颗粒介质中光热辐射传输有重要影响。基于光反射-透射测量方法,分析比较了单层反演模型和双层反演模型对重构颗粒分形聚集体几何特征参数的影响,并发展了一种改进的人工鱼群算法作为反问题方法,旨在提高反演结果精度。研究表明,双层反演模型比单层反演模型能提供更多的不相关信息来提高反演精度。与人工鱼群算法相比,改进的人工鱼群算法具有更高的精度和更好的鲁棒性,能够有效地避免局部优化问题。本文结果为预测颗粒分形聚集体几何特征参数提供了一种有效的测量技术。  相似文献   

11.
流场速度测量精度会影响飞行器气动性能的预测精度,常用的基于激光技术的非接触式速度测量方法已不能完全满足流场速度高精度测量需求,飞秒激光电子激发标记(Femtosecond Laser Electronic Excitation Tagging,FLEET)测速技术有望解决这一问题。利用钛蓝宝石飞秒激光器搭建了FLEET测速系统,分析了流场中的N2分子在飞秒激光激发下的电子荧光光谱;基于FLEET测速系统,在射流剪切装置上开展了剪切流场速度测量实验,通过调节高速通道的流量/压力获得了不同速度分布的流场,开展了不同流场速度(30~170 m/s)下的FLEET测速实验;研究了延迟时间对流场速度测量的影响。结果表明:随着延迟时间增加,荧光图像会由于等离子体的扩散而发生弥散;FLEET荧光信号衰减会使信噪比有所降低,但不同延迟时间下得到的流场速度分布形态基本一致;FLEET技术在有效荧光寿命范围内具有足够的准确性应用于剪切流场速度测量。  相似文献   

12.
光流测量技术作为一种新的空气动力学实验技术,以其像素级分辨率的矢量场测量优势获得广泛的应用。光流测量技术使用光流约束方程,配合平滑限定条件,可以进行速度场测量,获得高分辨率的全局矢量场。首先通过研究积分最小化光流测速理论和算法,采用C++编写光流速度测量程序,然后通过3种典型人工位移图像对光流计算程序进行验证,并将结果和标准位移分布进行比对分析,以指导如何在实际应用中获得高精度光流速度场,最后进行小型风洞后向台阶实验,利用高速相机拍摄示踪粒子图像,使用光流计算程序获得速度矢量场,同采用互相关算法的粒子图像测速计算结果进行比较,体现出光流计算方法像素级分辨率的矢量场测量优势。  相似文献   

13.
耦合传导/辐射情况下的传热参数和表面热流辨识问题是一类特殊的传热逆问题,在工程上应用较广。本文首先建立了耦合传导/辐射的传热问题的数值方法,进行了算例验证。然后分别建立了同时辨识材料热物性参数和辐射吸收系数的算法、辨识非稳态表面热流密度的算法;分析了测点位置、测量误差、辐射吸收系数对辨识结果的影响。结果表明:同时辨识材料热物性参数和辐射吸收系数时,利用右端测点的温度辨识出热传导系数值的精度较高,利用中间测点温度辨识出的辐射吸收特性系数值精度较高。对于表面热流的辨识,测点越靠近加热面,辨识结果的精度越高;吸收系数对中间测点的辨识结果影响大于其他位置测点的辨识结果。  相似文献   

14.
基于图像分割的两相流PIV/PTV测量技术   总被引:3,自引:0,他引:3  
介绍了采用图像分割技术,将密度较低的大悬浮颗粒和高浓度的示踪粒子共存的两相流场图像进行分离(相分离),对经过分割的悬浮相图像和连续相图像分别进行PTV和PIV运算,以实现对两相流动各个相速度场的同时测量.而后将基于相分离的PIV/PTV程序应用于对液固两相冲击射流流场的实验测量,并对测量结果进行了研究和分析,从而验证了相分离程序.实验结果表明,基于图像分割的PIV/PTV程序在两相流速度场测量中具有较好的实用性.  相似文献   

15.
介绍了有限容积法、直接积分法和Poisson方程法3种基于PIV瞬时速度场重构压力场的基本原理以及相应的计算方法,选取管流突扩流场和偏置方块绕流流场两个不可压缩流场的瞬时速度场数据,采用上述3种压力场重构算法,分别研究了图像噪声、速度场精度、插值算法以及边界条件的类型与精度对重构压力场的影响。最后针对管流突扩过程第20ms的流场,给出了3种重构算法下的压力场云图以及对应的CFD模拟结果。研究表明,有限容积法和直接积分法容易受到噪声的影响而产生剧烈震荡,但是可以在较大的速度场误差范围内保持较高的精度,通过采用双线性插值可以获得更高精度的重构压力场;Poisson方程法不易受到噪声的影响而产生震荡,同时在高精度PIV速度场下的优势较为突出,通过采用双三次差值可以获得更高精度的重构压力场;混合边界条件仅仅测定边界上有限个点的压力值,就获得了接近狄利克雷边界条件下重构压力场的精度,远高于诺依曼边界条件;边界条件的误差严重降低重构压力场的精度,其影响程度比速度场误差还要大。  相似文献   

16.
分析了相关深度对Micro-PIV速度场测量的影响,说明采用低密度粒子图像叠加技术能够有效减小相关深度,提高速度测量的准确性。将该方法应用于微柱群绕流流场的分层测量,雷诺数分别取0.8~3.6,在此基础上计算了空间平均速度。将分层速度场和平均速度廓线与采用平均相关技术获得的结果进行了比较。结果表明,采用低密度粒子图像叠加方法获得的全场绕流速度分布更为合理,通道底部和顶部近壁区的平均“伪滑移速度”分别减小了22.7%和17.2%,通道中心平均速度峰值增加了5.2%。  相似文献   

17.
标准孔板流量计内部流场的CFD数值模拟   总被引:2,自引:0,他引:2  
通过在标准孔板流量计中引入CFD数值模拟,为流出系数的获取提供了新途径.对不可压缩流体在不同流量、不同直径比、不同孔板轴向厚度和不同流动介质下的内部流场进行了数值模拟计算,并将计算出的流出系数与根据ISO公式计算出的流出系数进行了分析对比.结果表明,随着结构参数和工作条件的改变,流出系数都会随之发生变化,但ISO公式对孔板厚度的变化不太敏感.CFD数值模拟可以作为标准孔板流量计的辅助设计与标定手段,以进一步提高孔板流量计计量的准确性.  相似文献   

18.
以小型阵风发生装置为研究对象,采用二维热线风速仪,测量了不同工况下的阵风装置流场参数,给出了二维热线仪测量方案和在线角度修正方法,以及阵风幅值和波形稳定性计算方法。结果表明:采用风洞在线角度修正,可以提高二维热线的犢向测量精度和测试效率;采用波形相位分析方法,可以满足阵风发生器产生的周期性波形的幅值和流场脉动量分析;阵风幅值与4~15Hz 的叶栅摆动频率、8°~30°的叶栅摆动角度、50~100mm 的叶栅弦长成正比关系;阵风波形的不稳定性(等相位速度脉动量)与叶栅摆动角度、来流速度有一定的线性关系,在本试验范围内随叶栅摆动角度、来流速度的增加而增加,同时,适当的叶栅摆动频率可以降低叶栅的波形不稳定性。研究结论对阵风发生装置研制及其流场测量具有一定的参考意义。  相似文献   

19.
简化的混合估计算法及其在GPS/SINS深组合中的应用   总被引:1,自引:0,他引:1  
为解决GPS/SINS深组合导航系统滤波的非线性和噪声的不确定性的问题,针对深组合模型特点,设计了一种简化的基于U滤波的多模型混合估计滤波器。根据系统模型中状态方程是线性方程、观测方程是非线性方程的特点,提出了一种简化的U滤波算法(Ultra tight coupling unscented Kalman filter,UTCUKF),然后针对噪声变化建立了非线性模型,多模型混合估计滤波器的输出为各滤波器的概率加权融合,因此模型概率是根据噪声变化而调整的,从而也使系统输出对噪声变化具有一定自适应能力。最后进行了仿真,并与基于普通U滤波的多模型混合估计算法进行了比较。结果表明,本文算法的解算时间短,模型切换速度更快,而估计的精确度与同条件下的基于普通U滤波的多模型混合估计算法相当,更符合深组合系统高动态的要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号