首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Because the need for energy is global, and many energy networks are already interdependent, because no one country has sufficient technological capability or sufficient funds to provide a space solar powered solution on its own, and because any such solution will require international regulation, international coordination will be vital to any attempt to produce energy for Earth from space. This will be made easier by the fact that work on the subject has already been widely publicized and distributed and cooperative efforts have already been made. Various coordinating approaches are described and the need to forge partnerships between government, industry and academia — with greater involvement of all non-space groups concerned with energy — is emphasized. A “terracing approach” to the actual implementation of SPS is suggested and outlined.  相似文献   

2.
Private and commercial activity in outer space still poses challenges to space law and policy. Within ‘Project 2001’—a legal research project by the University of Cologne's Institute of Air and Space Law and the German Aerospace Center (DLR)—six international expert working groups examined international and national laws, in order to identify gaps and, where necessary, propose improvements to the present legal framework for private space activities. The results were presented and discussed at an international colloquium in May 2001 in Cologne, Germany, where final conclusions have been drawn. This report presents a summary of the project's work and main conclusions, which are documented in full in a comprehensive book to be published in May 2002.  相似文献   

3.
The exciting challenge of building a permanent space station has been taken up by the USA, and participation in its development has been offered to the USA's allies. European countries are faced with the dilemma of whether to cooperate or to try to develop an autonomous approach. This article discusses the opportunities for Europe in participating closely in the US project — particularly in providing pressurized modules based on the Columbus programme — and argues that it is an opportunity not to be missed.  相似文献   

4.
Peter Creola   《Space Policy》2001,17(2):87
Not only have the European Space Agency (ESA) and the European Union Commission succeeded in producing a joint space strategy within the time set for it, they have created a substantial and worthwhile document which recognises the importance of space for Europe and acknowledges that ESA—not national agencies—is the right body for the conduct of Europe's space efforts. Nevertheless, the strategy's lack of any government financial commitment is a worry— Public–Private Partnerships will never be enough—as is its failure to include any thought for the long term, and in particular manned flight. This critique of the strategy argues for more government spending on space and for greater long-term vision.  相似文献   

5.
Space Biospheres Ventures is developing technologies for its Biosphere 2 project — a 3 acre materially closed ecological system with human habitat, intensive agriculture and five wilderness biomes — and other life-support testbeds for space habitats in microgravity and the Moon and Mars, as well as for ecological research pertinent to the biosphere of Earth. These include soil bed reactors for air purification and biomass production; aquatic waste processing systems; real-time analytic systems; and computer systems of control and management. A space policy pursuing joint Earth and ‘space biospheres’ objectives and implications is discussed.  相似文献   

6.
The PRISMA project for autonomous formation flying and rendezvous has passed its critical design review in February–March 2007. The project comprises two satellites which are an in-orbit testbed for Guidance, Navigation and Control (GNC) algorithms and sensors for advanced formation flying and rendezvous. Several experiments involving GNC algorithms, sensors and thrusters will be performed during a 10 month mission with launch planned for the second half of 2009.The project is run by the Swedish Space Corporation (SSC) in close cooperation with the German Aerospace Center (DLR), the French Space Agency (CNES) and the Technical University of Denmark (DTU). Additionally, the project also will demonstrate flight worthiness of two novel motor technologies: one that uses environmentally clean and non-hazardous propellant, and one that consists of a microthruster system based on MEMS technology.The project will demonstrate autonomous formation flying and rendezvous based on several sensors—GPS, RF-based and vision based—with different objectives and in different combinations. The GPS-based onboard navigation system, contributed by DLR, offers relative orbit information in real-time in decimetre range. The RF-based navigation instrument intended for DARWIN, under CNES development, will be tested for the first time on PRISMA, both for instrument performance, but also in closed loop as main sensor for formation flying. Several rendezvous and proximity manoeuvre experiments will be demonstrated using only vision based sensor information coming from the modified star camera provided by DTU. Semi-autonomous operations ranging from 200 km to 1 m separation between the satellites will be demonstrated.With the project now in the verification phase particular attention is given to the specific formation flying and rendezvous functionality on instrument, GNC-software and system level.  相似文献   

7.
Jeff Kingwell   《Space Policy》2005,21(2):161-163
Although a rich and technologically advanced country, Australia has never had a proper national space programme. And while more and more countries—including those in the developing world—are investing in space, the Australian government seems to be moving in the opposite direction. The country's space community held a forum in November 2004 to look at ways of advancing their agenda and it is hoped, but sadly not certain, that the goals agreed may persuade the government of its folly.  相似文献   

8.
If a detection of ETI takes place, this will in all probability be the result of either: (a) detecting and recognising a signal or other emission of ETI; or (b) the finding of an alien artifact (for instance on the Moon or other Celestial Body of our Solar System); or (c) the highly improbable event of an actual encounter. First and foremost, legal consequences regarding any of these contingencies will result from immediate consultations between nations on Earth. Understandings, memoranda and even agreements might be proposed and/or concluded. Such results within the field of terrestrial law will surely be a new branch of International Law, and particularly of International Space Law. At the same time, terrestrial nations will have to realize that any ETI will be self-determined intelligent individualities or organizations who might have their own understanding of “rules of behaviour” and thus, be legal subjects. Whether one calls such rules “law” or not: if two intelligent races—both of which have specific rules of behaviour—come into contact with each other, the basic understanding of such mutual rules will lead to a kind of “code of conduct”. This might be the starting point for a kind of Law—Metalaw—between different races in the Universe.  相似文献   

9.
Technology readiness assessments: A retrospective   总被引:1,自引:0,他引:1  
John C. Mankins   《Acta Astronautica》2009,65(9-10):1216-1223
The development of new system capabilities typically depends upon the prior success of advanced technology research and development efforts. These systems developments inevitably face the three major challenges of any project: performance, schedule and budget. Done well, advanced technology programs can substantially reduce the uncertainty in all three of these dimensions of project management. Done poorly, or not at all, and new system developments suffer from cost overruns, schedule delays and the steady erosion of initial performance objectives. It is often critical for senior management to be able to determine which of these two paths is more likely—and to respond accordingly. The challenge for system and technology managers is to be able to make clear, well-documented assessments of technology readiness and risks, and to do so at key points in the life cycle of the program.In the mid 1970s, the National Aeronautics and Space Administration (NASA) introduced the concept of “technology readiness levels” (TRLs) as a discipline-independent, programmatic figure of merit (FOM) to allow more effective assessment of, and communication regarding the maturity of new technologies. In 1995, the TRL scale was further strengthened by the articulation of the first definitions of each level, along with examples (J. Mankins, Technology readiness levels, A White Paper, NASA, Washington, DC, 1995. [1]). Since then, TRLs have been embraced by the U.S. Congress’ General Accountability Office (GAO), adopted by the U.S. Department of Defense (DOD), and are being considered for use by numerous other organizations. Overall, the TRLs have proved to be highly effective in communicating the status of new technologies among sometimes diverse organizations.This paper will review the concept of “technology readiness assessments”, and provide a retrospective on the history of “TRLs” during the past 30 years. The paper will conclude with observations concerning prospective future directions for the important discipline of technology readiness assessments.  相似文献   

10.
This article examines the current legal status of commercial activities in space and describes the legislation — both national and international — existing for their regulation. The question of who is responsible for the action of non-governmental entities is thoroughly discussed, as is the notion of freedom of enterprise. Finally the author looks at the most commercialized areas of space activities — telecommunications and Earth observations — before drawing some conclusions on likely future trends in the privitization and regulation of space activities.  相似文献   

11.
Based on the results of studies carried out by ESA several possibilities are discussed to achieve mission cost reductions for large Spacelab instrument facilities as compared to their flight on several 7-day duration Spacelab missions. As an example three scientific telescope facilities are selected (LIRTS, EXSPOS, GRIST) which are defined to a Phase A level.Three new mission modes are considered:
• —Shuttle attached Spacelab mission mode with extended flight duration (up to 30 days) for which the application of planned capability extensions and new elements of the STS/Spacelab (e.g. Short Spacelab Pallets, Power Extension Package) are investigated.
• —Shuttle deployed mission mode, for which the telescope, accommodated on a Spacelab pallet, is docked to the Power Module, a new element of the Space Transportation System under study by NASA.
• —Free-flying mission mode, for which Shuttle launched dedicated missions of the facilities are considered, assuming varying degrees of autonomy with respect to supporting services of the Shuttle.
Reduction of costs have been considered on the levels of single mission cost and total programme cost. Fundamentally the charges for the instrument can be reduced by constraining the mass/volume factors with respect to the Shuttle capability. However, the instrument as part of a payload is only viable if an acceptable resource sharing including observation time can be achieved. Any single instrument will require several mission opportunities or one mission which achieves a similar or longer total observation programme.Based on an identification of instrument modifications of the Phase A baseline designs to favour cost reductions and on a derivation of technical requirements, constraints and finally budgetary cost comparisons an attempt is made to assess the advantages and disadvantages of the different mission modes.The favoured option for GRIST is a 2–3 weeks sortie mission followed after refurbishment by a longer Power Module docked mission. For LIRTS and EXSPOS the free-flying pallet modes are very attractive in terms of the longer durations achieved and in terms of cost per unit operating time.  相似文献   

12.
John C. Mankins   《Acta Astronautica》2009,65(9-10):1208-1215
Systems that depend upon the application of new technologies inevitably face three major challenges during development: performance, schedule and budget. Technology research and development (R&D) programs are typically advocated based on argument that these investments will substantially reduce the uncertainty in all three of these dimensions of project management. However, if early R&D is implemented poorly, then the new system developments that plan to employ the resulting advanced technologies will suffer from cost overruns, schedule delays and the steady erosion of initial performance objectives. It is often critical for senior management to be able to determine which of these two paths is more likely—and to respond accordingly. The challenge for system and technology managers is to be able to make clear, well-documented assessments of technology readiness and risks, and to do so at key points in the life cycle of the program.Several approaches have been used to evaluate technology maturity and risk in order to better anticipate later system development risks. The “technology readiness levels” (TRLs), developed by NASA, are one discipline-independent, programmatic figure of merit (FOM) that allows more effective assessment of, and communication regarding the maturity of new technologies. Another broadly used management tool is of the “risk matrix”, which depends upon a graphical representation of uncertainty and consequences. However, for the most part these various methodologies have had no explicit interrelationship.This paper will examine past uses of current methods to improve R&D outcomes and will highlight some of the limitations that can arise. In this context, a new concept for the integration of the TRL methodology, and the concept of the “risk matrix” will be described. The paper will conclude with observations concerning prospective future directions for the important new concept of integrated “technology readiness and risk assessments”.  相似文献   

13.
The technical development trend of future launch vehicle systems is towards fully reusable systems, in order to reduce space transportation cost. However, different types of launch vehicles are feasible, as there are
• —winged two-stage systems (WTS)
• —ballistic single-stage vehicles (BSS)
• —ballistic two-stage vehicles (BTS)
The performance of those systems is compared according to the present state of the art as well as the development cost, based on the “TRANSCOST-Model”. The development costs are shown versus launch mass (GLOW) and pay-load for the three types of reusable systems mentioned above.It is shown that performance optimization and cost minimization lead to different results. It is more economic to increase the vehicle size for achieving higher performance, instead of increasing technical complexity.Finally it is described that due to the essentially lower launch cost of reusable vehicles it will be feasible to recover the development cost by an amortization charge on the launch cost. This possibility, however, would allow commercial funding of future launch vehicle developments.  相似文献   

14.
One of the forms of astroengineering activity that a very advanced civilization could possibly carry on is the constructions of huge “buildings” in space around the central star. Historically such constructions are called Dyson Spheres. We would like to introduce a new name — Astroengineering Constructions (AC) — to mean a more general type of construction not necessarily related to any specific star. AC absorb energy from different types of activity and re-emit it as infrared radiation, i.e. radiation lying in the submillimeter and millimeter range. Further, AC are expect to have spectra similar to the black-body spectra because they re-emit all the energy that they absorb, although in the infrared range, as already mentioned. Thus, the effective temperature of these Planckian distributions is expected to lie between 3–300 K with the spectrum peaking between 10 μm and 10 mm. We have analyzed the IRAS database and extracted a catalog of sources whose spectra are similar to the black-body emission. The catalog of these sources and their preliminary parameters are discussed. The distribution of the color temperatures of IRAS sources and the sky distribution of sources are also considered. The possibility of the distinction of AC from thick circumstellar dust shells around red giant stars is discussed.  相似文献   

15.
This is a slightly abridged and edited version of the welcoming speech made by European Commission Vice-President Günter Verheugen at the ‘Winning through co-operation: sharing the benefits of space’ conference held in Brussels on 17–18 February 2005 as part of European Space Week. The importance of space for Europe across many areas—now explicitly acknowledged by the European Commission—is highlighted. Future initiatives are discussed and the Union's approach to international cooperation is outlined. It was hoped that the conference would provide an opportunity for participants to identify the best opportunities for partnership in space.  相似文献   

16.
While most studies on space power systems target electricity generation as the energy product, industrialized nations also have a need for chemicals to support transportation and other purposes. This paper therefore describes an alternative target for the application of space power systems: the production of chemical fuels based on radiant energy beamed or reflected from orbiting platforms. If cost and efficiency targets can be achieved, Solar Thermochemical Plants—occupying a few square kilometers each—can potentially generate substantial quantities of transportation fuels, therefore enabling reductions in the consumption of petroleum and the emission of carbon dioxide. The specifics of the approach that are described in this paper include the concentration of radiant energy within ground-based systems so that high temperature heat is provided for thermochemical process networks. This scoping study includes the evaluation of various feedstock chemicals as input to the Solar Thermochemical Plant: natural gas, biomass and zero-energy chemicals (water and carbon dioxide); and the production of either hydrogen or long-chain hydrocarbons (i.e., Fischer–Tropsch fuels) as the Solar Fuel product of the plant.  相似文献   

17.
Joosung J. Lee   《Space Policy》2008,24(2):104-112
This paper analyzes the national security and environmental concerns surrounding the Sea Launch consortium's international license from a legal perspective. The growing market demand for a more affordable, reliable, and convenient commercial satellite launching service has led to the idea of Sea Launch—launching satellites from the sea near the Equator. However, this can pose potential conflicts between national security and foreign policy interests, and between environmental conservation and economic growth because of the international technology development issues around launching from the sea. This paper illustrates a case for balancing such multiple constraints via legal interpretation. The analysis is conducted in reference to 49 U.S.C. § 70101–70119 Commercial Space Launch Activities and 42 U.S.C. § 4321–4345 National Environmental Policy Act (NEPA) of 1969. The paper also examines weather the United Nations Convention on the Law of the Sea is binding on Sea Launch operations. Although the scope of this paper is limited mostly to the US law and the national security and environmental aspects of Sea Launch, it provides a useful example for policy making of an international collaborative technology development project.  相似文献   

18.
The US RLV program aims to stimulate commercial development of a next-generation heavy-lift launcher and lower launch costs by one order of magnitude from the Space Shuttle. This paper discusses the incentives needed to encourage private investment — income tax relief, investment mitigation, financing assistance — in the venture and uses a specifically developed case study model to evaluate their effectiveness. It finds that an R&D tax credit would be the most practical incentive. Directions for future work are provided.  相似文献   

19.
Is there really any duplication in Europe''s space activities?   总被引:1,自引:1,他引:0  
At a time of declining space budgets in Europe, and of a consequent need to make savings, accusations of wasteful duplication—resulting from the large number of national agencies pursuing programmes alongside ESA—are rife, as are calls for the space industry further to consolidate. This viewpoint argues that duplication is not really the issue, however, since most national agencies have become specialists in particular fields. Nor would industry restructuring be straightforward, given the fact that Europe cannot be satisfied with a single source of supply. What is needed is better coordination between space agencies upstream to avoid later duplication, as is now being pursued through ESA's ‘harmonisation process’. The move to create a Network of Centres could also promote worthwhile collective action. These initiatives are more realistic than the technocratic aim of completely restructuring European space.  相似文献   

20.
Basic science — including space science — is vital for national development, but developing countries often meet obstacles to participation in the international scientific community. This can be mitigated by international cooperation, particularly in the field of education. The author calls for a concerted effort to increase such cooperation regionally, internationally and bilaterally; international organizations should also become involved. Various forms of cooperation are suggested and UN efforts in the promotion of basic space science are described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号