首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
利用差示扫描量热(DSC)法,得到端羟基聚醚(HTPE)/六硝基六氮杂异伍兹烷(CL-20)和HTPE/奥克托今(HMX)混合体系在不同升温速率(2.5、5.0、10.0、20.0℃/min)下的热分解曲线;用Kissinger公式和Ozawa公式,计算了HTPE/CL-20和HTPE/HMX体系热分解的表观活化能。结果表明,HTPE/CL-20混合体系表观活化能分别为132.11、130.60 k J/mol;HTPE/HMX混合体系表观活化能分别为193.80、198.57 k J/mol。对于同一体系,2种公式计算的结果基本一致。与单组分(CL-20或HMX)相比,HTPE/CL-20和HTPE/HMX体系的表观活化能分别降低了28.3~29.8 k J/mol和80.2~85.0 k J/mol。HTPE均降低了2种高能组分(CL-20和HMX)的分解放热峰温度,CL-20和HMX的分解放热峰峰温降低了36.0℃和17.3℃。HTPE/CL-20体系分解放热量减少了354.5 J/g,而HTPE/HMX体系分解放热量不变。  相似文献   

2.
PBT复合固体推进剂的热分解特性   总被引:1,自引:0,他引:1  
为了研究PBT复合固体推进剂的热分解过程,分别采用差示扫描量热仪(DSC)和绝热加速量热仪(ARC),对复合固体推进剂及各单组分的热分解特性进行了研究,并对其进行了慢烤试验。DSC的试验结果表明,在温升速率为10℃/min的条件下,PBT复合推进剂的初始分解温度为183.6℃;推进剂组分中增塑剂BU的初始分解温度最低,为192.9℃,表明复合推进剂的热分解过程是从BU开始。在ARC试验中,推进剂在绝热条件下有三段放热过程,第一段放热过程的初始分解温度为121.7℃,且第一阶段的热分解并未直接引发其他组分的后续热分解反应。在慢烤试验中,PBT复合推进剂中最先分解的组分为BU,且BU的分解并未导致样品整体发生反应。根据DSC的测试结果,利用Kissinger法计算得到BU的热分解活化能为137.8 k J/mol,PBT复合推进剂第一段放热峰的表观活化能为101.7 k J/mol。  相似文献   

3.
合成了2,6-二氨基-3,5-二硝基吡啶-1-氧化物(ANPyO)Bi(Ⅲ)含能配合物,采用FTIR、元素分析和XPS光电子能谱表征了含能配合物的结构。根据结构表征结果推测,ANPyOBi(Ⅲ)含能配合物的分子式为Bi(C5H4N5O5)3,金属离子与配体的配比为1∶3。其中,可能的配位方式为:每个配体ANPyO 2-位的氨基脱去一个氢原子,分别以NH和N→O结构单元中N原子和O原子与Bi(Ⅲ)形成配位键。ANPyOBi(Ⅲ)含能配合物的撞击感度、摩擦感度和冲击波感分别为220cm、36 kg和5.8 mm。采用TG-DTG和DSC测试考察了ANPyOBi(Ⅲ)含能配合物的热分解行为,配合物在50~450℃范围内热分解过程由一个吸热熔融峰和分解放热峰组成,相应的峰温分别为320.6℃和346.5℃,配合物热分解剩余残渣量为31.2%。同时,考察了配合物对高氯酸铵热分解的催化作用,并采用Kissinger法对纯AP和AP混合物热分解过程低温分解阶段和高温分解阶段的表观活化能和指前因子进行了计算。结果表明,ANPyOBi(Ⅲ)含能配合物可使高氯酸铵高温分解阶段和低温分解阶段的峰温提前63.6℃和63.1℃,表观活化能降低23.1 kJ/mol和61.5 kJ/mol,表观分解热增加339.3 J/g。可发现,ANPyOBi(Ⅲ)含能配合物对AP的热分解具有显著的催化作用。  相似文献   

4.
合成了2,6-二氨基-3,5-二硝基吡啶-1-氧化物(ANPyO) Bi(III)含能配合物,采用FTIR、元素分析和XPS光电子能谱表征了含能配合物的结构.根据结构表征结果推测,ANPyO Bi(III)含能配合物的分子式为Bi(C5H4N5O5)3,金属离子与配体的配比为1∶3.其中,可能的配位方式为:每个配体ANPyO 2-位的氨基脱去一个氢原子,分别以NH和N→O结构单元中N原子和O原子与Bi(III)形成配位键.ANPyO Bi(III)含能配合物的撞击感度、摩擦感度和冲击波感分别为220 cm、36 kg和5.8 mm.采用TG-DTG和DSC测试考察了ANPyO Bi(III)含能配合物的热分解行为,配合物在50~450 ℃范围内热分解过程由一个吸热熔融峰和分解放热峰组成,相应的峰温分别为320.6 ℃和346.5 ℃,配合物热分解剩余残渣量为31.2%.同时,考察了配合物对高氯酸铵热分解的催化作用,并采用Kissinger法对纯AP和AP混合物热分解过程低温分解阶段和高温分解阶段的表观活化能和指前因子进行了计算.结果表明,ANPyO Bi(III)含能配合物可使高氯酸铵高温分解阶段和低温分解阶段的峰温提前63.6 ℃和63.1 ℃,表观活化能降低23.1 kJ/mol和61.5 kJ/mol,表观分解热增加339.3 J/g.可发现,ANPyO Bi(III)含能配合物对AP的热分解具有显著的催化作用.  相似文献   

5.
合成了2,4,6-三氨基-3,5-二硝基吡啶-1-氧化物(TANPy O)含能钾盐,采用FTIR和元素分析,表征并分析了其结构,该含能盐分子式为K(C5H5N6O5)。其中,TANPy O 4-位的氨基脱去一个氢原子。测试了TANPy O含能钾盐的撞击感度和摩擦感度,TANPy O含能钾盐的撞击感度和摩擦感度分别为272 cm和0。采用TG-DTG和DSC技术,研究了TANPy O含能钾盐的热分解行为,含能盐分别有一个吸热峰和一个分解放热峰,峰温分别为249.3℃和278.7℃,热分解剩余残渣量为8.8%。采用TG-DTG和DSC技术,研究了TANPy O含能钾盐对AP热分解的催化作用。结果表明,TANPy O含能钾盐可使AP热分解速度加快,低温分解峰温和高温分解峰温分别提前10.8、72.5、49.0℃,对AP热分解具有良好的催化效果。  相似文献   

6.
利用差示扫描量热法(DSC)得到端羟基聚醚(HTPE)推进剂(H01和H02)在不同升温速率下热分解曲线,用Kissinger公式和Ozawa公式计算了H01和H02热分解的表观活化能;利用绝热加速量热仪(ARC)对H01和H02进行绝热量热测试,得到H01和H02的热分解特性参数。结果表明:HTPE推进剂(基础配方为HTPE/A3/AP/Al/PSAN)中相稳定硝酸铵(PSAN)/高氯酸铵(AP)含量比值增加对推进剂的初始分解峰影响不大,HTPE推进剂的第一步分解是增塑剂A3的热分解,H01和H02的表观活化能分别为127.28kJ·mol~(-1)和123.43kJ·mol~(-1);在绝热条件下,H01的起始分解温度较高(147.78℃),高于H02的起始分解温度(136.44℃),反应结束后,两种物质系统的最大压力分别为0.709 MPa和0.531 MPa;H01的绝热温升(246.94℃)高于H02(184.47℃),发生热分解反应时,严重度更大,初始的热分解反应更为剧烈。因此,PSAN/AP含量比值增加有助于降低HTPE推进剂在热刺激下的响应程度。  相似文献   

7.
纳米CuO的制备及与高氯酸铵复合方式对其热分解的影响   总被引:1,自引:0,他引:1  
用室温固相反应法制备了纳米CuO,用XRD表征了其物相,用TEM观察了其形貌,比较了煅烧对产品粒径和分散性的影响。用干法研磨、湿法研磨、溶剂-非溶剂法、喷雾干燥溶剂-非溶剂法4种复合方法制备了CuO/AP复合粒子,用TG-DSC测定了复合粒子热分解温度、分解速率和表观分解热,用SEM观察了复合粒子的形貌。结果表明,煅烧后的CuO颗粒容易聚集;4种复合方法均能大幅降低AP的分解温度。其中,以喷雾干燥溶剂-非溶剂法最能充分利用CuO对AP的催化性能,与不加CuO相比,AP的低温分解放热峰温降低了42.7℃,高温分解放热峰温降低了113.1℃,表观分解热增加了110.9%。制备方法会影响CuO的分散性和AP粒子的形貌,进而影响AP的热分解过程。  相似文献   

8.
纳米NiO/CNTs和Co3O4/CNTs对AP及HTPB/AP推进剂热分解的影响   总被引:2,自引:0,他引:2  
以碳纳米管(CNTs)为载体,采用化学沉淀法制备了纳米N iO/CNTs、Co3O4/CNTs复合粒子,应用TEM、SEM、XRD、EDS、BET等方法对产物形貌、结构进行了表征,并用DSC研究了纳米N iO、Co3O4、CNTs等单一粒子及纳米N iO/CNTs、Co3O4/CNTs复合粒子对AP及HTPB/AP推进剂热分解的催化作用。结果表明,纳米N iO/CNTs、Co3O4/CNTs复合粒子结晶好、包覆均匀、比表面积大。纳米N iO、Co3O4、CNTs等单一粒子和纳米N iO/CNTs、Co3O4/CNTs复合粒子均能使AP及HTPB/AP推进剂热分解的高温分解峰温降低、表观分解热增加,表现出良好的催化性能。相比而言,纳米复合粒子的催化性能均优于其相应单一组分,表现出良好的正协同作用。复合粒子中以Co3O4/CNTs复合粒子的催化效果最为显著,使AP和HTPB推进剂的高温分解峰温降低了153.06℃和60.0℃,使总表观分解热分别增加了1 163 J/g和920 J/g。  相似文献   

9.
碳纳米管/HTPB复合粒子的制备及其催化性能研究   总被引:2,自引:2,他引:0  
用HTPB对碳纳米管(CNTs)进行改性,改善其对AP热分解的催化性能,并使用TEM和FTIR对其进行表征。热重分析表明,CNTs/HTPB复合粒子中HTPB的含量为28.57%。采用差示热分析(DTA)研究了CNTs/HTPB复合粒子对AP热分解的催化性能。结果表明,CNTs/HTPB复合粒子对AP的热分解具有一定的催化性能,与纯AP相比,高温分解峰温提前了111.9℃,表观分解热由309.92J/g提高到987.18J/g,优于CNTs与AP的简单混合样,表明经过HTPB改性后CNTs对AP具有较好催化性能,同时AP与CNTs/HTPB复合可使其高温分解峰温进一步降低9.8℃。  相似文献   

10.
CuO/CNTs复合催化剂的制备及对FOX-12热分解的催化性能   总被引:3,自引:0,他引:3  
以醋酸铜和碳纳米管为原料,采用溶胶浸渍法在常压低温(100℃)下制备出CuO/CNTs复合催化剂,采用XRD、TEM、ICP等对催化剂进行表征,并用DSC研究催化剂对FOX-12热分解特性的影响。TEM结果表明,纳米CuO以8~10 nm的椭球形粒子和宽度为5 nm、长度为50 nm的棒状粒子2种形态附着在碳纳米管表面。催化剂使FOX-12分解峰温降低、放热量增加、表观活化能降低,表现出良好的催化性能。当FOX-12与催化剂以质量比5:1混合时,FOX-12热分解峰温降低了20.3℃,ΔH增加了332 J/g。  相似文献   

11.
N,N'-二硝基哌嗪的热分解机理及动力学研究   总被引:1,自引:0,他引:1  
采用高压差示扫描量热(PDSC)、热重分析(TGA)和快速扫描傅立叶变换红外光谱(FTIR)等分析技术,研究了N,N'-二硝基哌嗪(DNP)的热分解机理;采用原位热裂池的FTIR技术分析分解过程的凝聚相变化,最终获得其热分解动力学方程和热分解与化学反应的具体过程。研究表明,0.1 MPa下DNP发生挥发,不能正常分解;而在2、4、6 MPa下DNP的分解过程较简单,先在217℃处出现一强吸热峰,它是由DNP熔融过程引起的,它随压强的变化不大,而后在244.2~251.7℃之间出现的主要放热峰,主放热峰之后300℃左右处有一小肩峰出现,且随着压强增大逐渐明显,这说明DNP在较高压强下出现了二次分解反应。采用3种不同计算方法所得的DNP分解活化能为103~124 kJ.mol-1;最后经过分析计算得到了DNP热分解机理函数。  相似文献   

12.
采用高压差示扫描量热(PDSC)、热重分析(TGA)和快速扫描傅立叶变换红外光谱(FTIR)等分析技术,研究了N,N'-二硝基哌嗪(DNP)的热分解机理;采用原位热裂池的FTIR技术分析分解过程的凝聚相变化,最终获得其热分解动力学方程和热分解与化学反应的具体过程.研究表明,0.1 MPa下DNP发生挥发,不能正常分解;而在2、4、6 MPa下DNP的分解过程较简单,先在217 ℃处出现一强吸热峰,它是由DNP熔融过程引起的,它随压强的变化不大,而后在244.2~251.7 ℃之间出现的主要放热峰,主放热峰之后300 ℃左右处有一小肩峰出现,且随着压强增大逐渐明显,这说明DNP在较高压强下出现了二次分解反应.采用3种不同计算方法所得的DNP分解活化能为103~124 kJ*mol-1;最后经过分析计算得到了DNP热分解机理函数.  相似文献   

13.
以硝酸铵为硝化剂,浓硫酸为脱水剂,一缩二甘油为前驱体,制备了含能增塑剂一缩二甘油四硝酸酯(DGTN);采用核磁共振确认了产物的分子结构;对DGTN进行了DSC分析,计算了DGTN热分解的表观活化能(E_K)、指前因子(A_K)、速率常数(k)、活化焓(ΔH~≠)、活化自由能(ΔG~≠)和活化熵(ΔS~≠)。同时,利用TG-IR分析研究了DGTN的热分解产物。测试了DGTN的撞击感度,计算了DGTN单元推进剂的标准比冲(I_(sp))、特征速度(C~*)、燃烧室温度(T_c)和燃烧产物平均相对分子质量(M_c),并与NG进行了对比。另外,利用DSC分析研究了DGTN与AP和HMX的相容性。结果表明,DGTN的分解峰温在199~208℃之间,表观热分解活化能为164.4 k J/mol,分解产物为CO_2、NO_2、CH_4和H_2O,还有少量CO、NO和CH_2O生成。DGTN的撞击感度明显低于NG,能量性能与NG相近。DGTN的加入未影响AP和HMX的热分解过程,AP和HMX也未影响DGTN的热分解过程,说明DGTN与AP和HMX有较好的化学相容性。  相似文献   

14.
通过DSC-TG热分析方法,对单组分聚氨酯和硼改性酚醛树脂两种多碳有机物对叠氮化钠气体发生剂的热分解动力学特性进行了研究。单组分聚氨酯降低了叠氮化钠热分解温度37℃,对叠氮化钠热分解温度影响较小;硼改性酚醛树脂降低了叠氮化钠热分解温度56℃,促进了叠氮化钠热分解。利用ASTM E698法和Ozawa法计算多组分混合物体系活化能,结果发现,单组分聚氨酯混合物体系表观活化能分别为385、397 kJ/mol;硼改性酚醛树脂混合物体系表观活化能分别为275、286 kJ/mol,两种方法计算结果较一致。与纯叠氮化钠热分解活化能值163 kJ/mol相比,硼改性酚醛树脂和单组分聚氨酯都提高了叠氮化钠热分解表观活化能,使叠氮化钠性能更稳定,达到热分解所需能量更高。  相似文献   

15.
采用高能机械球磨法制备出平均粒径为58.1 nm的纳米TATB。利用SEM分析表征了纳米TATB的微观形貌,并统计了纳米TATB的粒度分布。利用XRD、IR和XPS表征了纳米TATB的晶型、分子结构和表面元素等。采用DSC和DSC-IR联用系统对纳米TATB的热分解活化能和热分解产物进行了分析。结果表明,纳米TATB的表观热分解活化能(ES=341.2 k J/mol)相比原料TATB(ES=354.4 k J/mol)降低了13.2 k J/mol,说明纳米TATB的反应活性更高。纳米TATB的主要分解产物为CO_2,同时伴有一定量的N_2O和NO_2生成。热感度实验表明,纳米TATB的5 s爆发点(T5s)高于原料TATB的T5s,说明纳米TATB的热稳定性更高。  相似文献   

16.
Fe2O3/CNTs复合粒子的制备及其对AP热分解催化性能的影响   总被引:1,自引:1,他引:0  
以碳纳米管(CNTs)为载体,采用溶胶-凝胶法制备了Fe2O3/CNTs复合粒子,应用红外光谱仪(FT-IR)、X-ray衍射仪(XRD)、扫描电子显微镜(SEM)、X射线能谱(EDS)、比表面积分析仪(BET)等手段对产物的结构、形貌、粒度和比表面积进行表征,并用差示扫描量热仪(DSC)研究了纯CNTs、CNTs和Fe2O3简单混合、Fe2O3/CNTs复合粒子及不同比例Fe2O3/CNTs复合粒子对AP热分解的催化作用。结果表明,Fe2O3/CNTs复合粒子结晶好、包覆均匀、比表面积大。Fe2O3/CNTs复合粒子可显著降低AP热分解峰温,使总表观分解热明显增加,高温分解的表观活化能降低,热分解反应速率常数增加,表现出显著的催化效果。  相似文献   

17.
以硝酸铜、硝酸铁为反应物,氨水为沉淀剂,PEG-400为分散剂,通过共沉淀法合成了纳米CuFe_2O_4。利用XRD、FE-SEM、TEM表征了纳米CuFe_2O_4颗粒的结构、粒径及形貌。同时,采用DSC研究了纳米CuFe_2O_4对AP热分解的催化性能。结果表明,所得的产物主要为尖晶石结构的CuFe_2O_4,粒径约为200 nm,呈类球形。DSC分析表明,纳米CuFe_2O_4对AP的催化效果优于单独使用共沉淀法制备的纳米CuO、纳米Fe2O3或者纳米CuO+Fe_2O_3(CuO和Fe_2O_3的摩尔比是1∶1)混合物的催化效果。纳米CuFe_2O_4对不同粒径的AP均具有显著的催化作用,且2%含量为纳米CuFe_2O_4催化AP的最佳使用量,可使64、6、1μm AP的高温分解峰温分别从441.3、433.8、416.9℃降低至356.8、379.8、355.2℃;表观分解热分别从941、1167、1312 J/g增加至1734、1 838、1 855 J/g;同时使64、6、1μm AP的热分解反应速率常数分别增大。随着AP粒径的减小,其团聚性增强,很难与纳米CuFe_2O_4形成均匀混合物。因此,想要提高纳米CuFe_2O_4对超细AP的催化性能,应该从解决纳米CuFe_2O_4和超细AP的分散均匀性入手。  相似文献   

18.
GAP型含能热塑性聚氨酯弹性体热分解反应动力学研究   总被引:2,自引:0,他引:2  
采用DSC、TG考察了可用于固体推进剂的GAP型热塑性聚氨酯弹性体(ETPUE)的热分解行为,并分别采用Kissinger方法和Ozawa方法计算了热分解反应的活化能Ea和指前因子lnA等动力学常数。结果表明,GAP型ETPUE的热分解分3个阶段:叠氮基团分解、硬段分解、软段主链分解。给出了放热阶段的热分解机理函数,并研究了硬段含量对热分解性能的影响。  相似文献   

19.
利用溶胶-凝胶法,通过引入1,2-环氧丙烷作为Fe(Ⅲ)离子的水解促进剂,在温和、无毒的条件下制备了纳米AP/Fe2O3的湿凝胶,经超临界干燥后得到AP/Fe2O3纳米复合氧化剂的气凝胶.利用TEM、SEM、EDS和DSC时样品微观形貌、表面元素组成和热分解特性进行了研究,并测试了它们的撞击和摩擦感度.结果表明,该复合氧化剂具有纳米尺寸,其中AP粒度在50~90 nm之间,Fe2O3粒度约加nm.AP/Fe2O3撞击感度普遍高于纯AP撞击感度.但AP/Fe2O3摩擦感度低于纯AP摩擦感度.另外,AP/Fe2O3分解放热峰温度较纯AP有很大程度提前,放热量也显著增加,其中含90%AP的纳米复合氧化剂高、低温分解峰较纯AP分别提前了124.96 ℃和113.02℃,放热量增加了438.85%.  相似文献   

20.
采用机械球磨法对PbCO_3和CuO两种常用燃速催化剂进行纳米化粉碎。用激光粒度仪、扫描电子显微镜(SEM)和X射线衍射仪(XRD)分析了产物粒子的粒径分布、形貌、晶型和纯度。通过分别计算样品中PbCO_3和CuO含量的标准偏差,定量分析了两种组分在PbCO_3/CuO复合粒子中的分散均匀度。用差示扫描量热仪(DSC)分析了产品对吸收药热分解性能的影响。通过测定双基推进剂的燃速研究了产品对其燃烧性能的影响。结果表明,产物平均粒径为70 nm,粒度分布很窄;PbCO_3和CuO组分的分散均匀度分别达到了95.40%和92.60%。产物使吸收药热分解峰温提前了29.35℃,表观分解热增加了606 J/g,表观活化能降低了16.58 k J/mol。与普通PbCO_3和CuO的混合催化剂相比,纳米PbCO_3/CuO复合粒子使双基推进剂的燃烧压力指数降低了0.203。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号