首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
The secular variation of the core field is generally characterized by smooth variations, sometimes interrupted by abrupt changes, named geomagnetic jerks. The origin of these events, observed and investigated for over three decades, is still not fully understood. Many fundamental features of geomagnetic jerks have been the subject of debate, including their origin internal or external to the Earth, their occurrence dates, their duration and their global or regional character. Specific tools have been developed to detect them in geomagnetic field or secular variation time series. Recently, their investigation has been advanced by the availability of a decade of high-quality satellite measurements. Moreover, advances in the modelling of the core field and its variations have brought new perspectives on the fluid motion at the top of the core, and opened new avenues in our search for the origin of geomagnetic jerks. Correlations have been proposed between geomagnetic jerks and some other geophysical observables, indicating the substantial interest in this topic in our scientific community. This paper summarizes the recent advances in our understanding and interpretation of geomagnetic jerks.  相似文献   

3.
Fluid motions in the Earth’s core produce changes in the geomagnetic field (secular variation) and are also an important ingredient in the planet’s rotational dynamics. In this article we review current understanding of core dynamics focusing on short timescales of years to centuries. We describe both theoretical models and what may be inferred from geomagnetic and geodetic observations. The kinematic concepts of frozen flux and magnetic diffusion are discussed along with relevant dynamical regimes of magnetostrophic balance, tangential geostrophy, and quasi-geostrophy. An introduction is given to free modes and waves that are expected to be present in Earth’s core including axisymmetric torsional oscillations and non-axisymmetric Magnetic-Coriolis waves. We focus on important recent developments and promising directions for future investigations.  相似文献   

4.
The geomagnetic signal contains an enormous temporal range—from geomagnetic jerks on time scales of less than a year to the evolution of Earth’s dipole moment over billions of years. This review compares observations and numerical models of the long-term range of that signal, for periods much larger than the typical overturn time of Earth’s core. On time scales of 105–109 years, the geomagnetic field reveals the control of mantle thermodynamic conditions on core dynamics. We first briefly describe the general formalism of numerical dynamo simulations and available paleomagnetic data sets that provide insight into paleofield behavior. Models for the morphology of the time-averaged geomagnetic field over the last 5 million years are presented, with emphasis on the possible departures from the geocentric axial dipole hypothesis and interpretations in terms of core dynamics. We discuss the power spectrum of the dipole moment, as it is a well-constrained aspect of the geomagnetic field on the million year time scale. We then summarize paleosecular variation and intensity over the past 200 million years, with emphasis on the possible dynamical causes for the occurrence of superchrons. Finally, we highlight the geological evolution of the geodynamo in light of the oldest paleomagnetic records available. A summary is given in the form of a tentative classification of well-constrained observations and robust numerical modeling results.  相似文献   

5.
Electrodynamics of the ionosphere   总被引:1,自引:0,他引:1  
We review various important studies in the field of electrodynamics of the ionosphere. Four topics are presented; (1) conductivity, (2) wind and the dynamo theory, (3) drift and its effect on the ionosphere formation and (4) interaction between wind and electromagnetic field.We point out some important future problems. They are: (1) We need to consider in the dynamo theory of the geomagnetic daily variation the connection of the ionosphere of both hemispheres by lines of force of the geomagnetic field. (2) Non-periodic wind may be important for producing electric field. (3) Drift to cause interchange of ionization contained in tubes of the geomagnetic field lines, and diffusion of ionization in these tubes control dynamic behaviours of the F2 region. (4) Interaction between wind and electric current presents a new problem. (5) The ionosphere and the magnetosphere react to each other.  相似文献   

6.
Variations of the geomagnetic field over past millennia can be determined from archeomagnetic data and paleomagnetic sediment records. The resolution and validity of any field reconstruction depends on the reliability of such indirect measurements of past field values. Considerable effort is invested to ensure that the magnetic minerals carrying the ancient magnetization are good, if not ideal, recorders of the magnetic field. This is achieved by performing a wide array of rock magnetic and microscopy investigations, many of which are outlined here. In addition to data quality, the spatial and temporal distributions of archeomagnetic and sediment records play a significant role in the accuracy of past field reconstruction. Global field reconstructions enable studies of dynamic processes in Earth’s core. They rely on data compilations which ideally include information about the quality of a measurement and provide a useful archive for selecting data with the best characteristics. There is, however, a trade off between the total number of reliable data and the geographic or temporal coverage. In this review we describe the various types of paleomagnetic recorders, and the kind of measurements that are performed to gather reliable geomagnetic field information. We show which modeling strategies are most suitable, and the main features of the field that can be derived from the resulting models. Finally, we discuss prospects for progress in this kind of research.  相似文献   

7.
Beer  Jürg 《Space Science Reviews》2000,94(1-2):53-66
Continuous direct records of solar variability are limited to the telescopic era covering approximately the past four centuries. For longer records one has to rely on indirect indices such as cosmogenic radionuclides. Their production rate is modulated by magnetic properties of the solar wind. Using a parameterisation of the solar activity and a Monte Carlo simulation model describing the interaction of the cosmic rays with the atmosphere, the production rate for each cosmogenic nuclide of interest can be calculated as a function of solar activity. Analysis of appropriate well-dated natural archives such as ice cores or tree rings offers the possibility to reconstruct the solar activity over many millennia. However, the interpretation of the cosmogenic nuclide records from these archives is difficult. The measured concentrations contain not only information on solar activity but also on changes in the geomagnetic field intensity and the transport from the atmosphere into the archive where, under ideal conditions, no further processes take place. Comparison of different nuclides (e.g. 10Be and 14C) that are produced in a very similar way but exhibit a completely different geochemical behaviour, allows us to separate production effects from system effects.The presently available data show cyclic variability ranging from 11-year to millennial time scale periodicities with changing amplitudes, as well as irregularly distributed intervals of very low solar activity (so called minima, e.g. Maunder minimum) lasting typically 100 years.  相似文献   

8.
Mariner 10 measurements proved the existence of a large-scale internal magnetic field on Mercury. The observed field amplitude, however, is too weak to be compatible with typical convective planetary dynamos. The Lorentz force based on an extrapolation of Mariner 10 data to the dynamo region is 10−4 times smaller than the Coriolis force. This is at odds with the idea that planetary dynamos are thought to work in the so-called magnetostrophic regime, where Coriolis force and Lorentz force should be of comparable magnitude. Recent convective dynamo simulations reviewed here seem to resolve this caveat. We show that the available convective power indeed suffices to drive a magnetostrophic dynamo even when the heat flow though Mercury’s core–mantle boundary is subadiabatic, as suggested by thermal evolution models. Two possible causes are analyzed that could explain why the observations do not reflect a stronger internal field. First, toroidal magnetic fields can be strong but are confined to the conductive core, and second, the observations do not resolve potentially strong small-scale contributions. We review different dynamo simulations that promote either or both effects by (1) strongly driving convection, (2) assuming a particularly small inner core, or (3) assuming a very large inner core. These models still fall somewhat short of explaining the low amplitude of Mariner 10 observations, but the incorporation of an additional effect helps to reach this goal: The subadiabatic heat flow through Mercury’s core–mantle boundary may cause the outer part of the core to be stably stratified, which would largely exclude convective motions in this region. The magnetic field, which is small scale, strong, and very time dependent in the lower convective part of the core, must diffuse through the stagnant layer. Here, the electromagnetic skin effect filters out the more rapidly varying high-order contributions and mainly leaves behind the weaker and slower varying dipole and quadrupole components (Christensen in Nature 444:1056–1058, 2006). Messenger and BepiColombo data will allow us to discriminate between the various models in terms of the magnetic fields spatial structure, its degree of axisymmetry, and its secular variation.  相似文献   

9.
This review addresses possible biospheric effects of geomagnetic polarity transitions. During a transition the magnetic field at the surface of the Earth decreases to about 10% of its current value. If the geomagnetic field is a shield against energetic particles of solar or cosmic origin then biospheric effects can be expected. We review the early speculations on the problem and discuss in more detail its current status. We conclude that no clear picture of a geomagnetic link, a causal relation between secular magnetic field variations and the evolution of life on our planet can be drawn.  相似文献   

10.
Whereas the entry mechanism of energetic solar particles into the open field line region of the magnetosphere is now a rather well understood process, transport processes of solar particles in the closed field line region are still unclear and under dispute. The main difficulty lies not only in the fact that different field models predict different behavior of the particles in the quasi-trapping region (e.g. cut-off latitude), but that dynamic changes of the magnetosphere as geomagnetic storms and substorms greatly influence the particle distribution. The present review tries to summarize the status of knowledge regarding solar proton behavior on closed magnetospheric field lines. Together with a presentation of recent measurements in the closed field line region relevant theoretical problems are discussed. They fall either under the study of single particle motion in different static magnetospheric configurations (due to different field models or due to real, e.g. ring current induced changes), or under the study of resonant interaction processes as pitch angle scattering and radial diffusion.Invited Lecture, Second Meeting of the European Geophysical Society, September 1974, Trieste, Italy.  相似文献   

11.
Polar auroras     
Conclusion We have reviewed the somewhat conflicting data which have accumulated on such a vast scale in recent years. It is now becoming clearer which studies are likely to produce significant results, and this in itself may be a very important consequence of the assimilation of accumulated data. We must however ask in conclusion: does the outer radiation belt exist during the polar aurora? If the interplanetary media or the solar wind, carry magnetic fields, then these fields can be of two kinds. Firstly, they may be magnetic lines of force dragged by the plasma from the Sun. Secondly, the interplanetary medium or the solar wind are capable of carrying closed magnetic lines of force which are not related to the Sun. When such fields approach the Earth, the high-latitude geomagnetic lines of force which previously passed through the equatorial plane on the boundary of the magnetosphere, may deform in such a way as to pass out of one geomagnetic poles, miss the equatorial plane, enter the interplanetary plasma, and after passing through a very considerable volume of this plasma reach the other geomagnetic pole. This will in effect amount to an attachment through the medium of magnetic lines of force of enormous regions of ionised interplanetary matter or of solar wind to the Earth's magnetosphere. As these extraneous magnetic fields depart from the Earth's neighbourhood, the original dipole field will be reestablished. Rapid variations in the configuration of the geomagnetic field will occur during the interaction. It is possible that energetic particles appear with a very high degree of probability on the boundary of the geomagnetic field during such deformations. If this is so, then the outer radiation belt is merely a temporary formation appearing during the quiet intervals between geomagnetic disturbances, and containing a small residue of energetic charged particles, which exist during the polar auroras but do not succeed in entering the lower atmosphere during this time. In this process the particles giving rise to the polar auroras originate in the plasma of the solar corpuscular streams flowing past the Earth.Under the action of a solar wind the geomagnetic field is compressed at the front and elongated at the rear. This resembles the original Chapman theory of geomagnetic storms more closely than any other theory. Since the elongated geomagnetic field on the night side of the Earth is of a lower intensity, it may be associated with the magnetic fields brought in by the incident medium right down to very great depths. This may be responsible for the observed displacement at the zone of the polar auroras towards lower geomagnetic latitudes at night.Translated by the Express Translation Servies, Wimbledon, London.  相似文献   

12.
由于水下运载器使用地磁滤波导航方法时难收敛、易发散,根据水下运载 器的特点设计了一种基于多参量信息的水下地磁滤波导航算法。针对单纯使用地磁数据 进行位置匹配精度较差的问题,该算法在匹配及滤波过程中引入了地磁强度、航向、航 速等多参量信息,采用非线性滤波框架进行信息融合,采用粒子群算法根据多参量信息 进行位置搜索,并以之为系统滤波的观测值,通过提高位置观测精度改进滤波的收敛性 和鲁棒性。仿真结果表明,算法滤波精度高,稳定性好,能够较好地抑制各类传感器干 扰和误差对滤波估计的影响,适用于水下运载器的地磁导航定位。  相似文献   

13.
This paper reviews the principal results of direct measurements of the plasma and magnetic field by spacecraft close to the Earth (within the heliocentric distance range 0.7–1.5 AU). The paper gives an interpretation of the results for periods of decrease, minimum and increase of the solar activity. The following problems are discussed: the interplanetary plasma (chemical composition, density, solar wind flow speed, temperature, temporal and spatial variation of these parameters), the interplanetary magnetic field (intensity, direction, fluctuations and its origin), some derived parameters characterizing the physical condition of the interplanetary medium; the quasi-stationary sector structure and its connection with solar and terrestrial phenomena; the magnetohydrodynamic discontinuities in the interplanetary medium (tangential discontinuities and collisionless shock waves); the solar magnetoplasma interaction with the geomagnetic field (the collisionless bow shock wave, the magnetosheath, the magnetopause, the Earth's magnetic tail, the internal magnetosphere characteristics), the connection between the geomagnetic activity and the interplanetary medium and magnetosphere parameters; peculiarities in behaviour of the interplanetary medium and magnetosphere during geomagnetic storms; energetic aspects of the geomagnetic storms.  相似文献   

14.
Solanki  S.K.  Fligge  M. 《Space Science Reviews》2000,94(1-2):127-138
Accurate measurements of solar irradiance started in 1978, but a much longer time series is needed in order to uncover a possible influence on the Earth's climate. In order to reconstruct the irradiance prior to 1978 we require both an understanding of the underlying causes of solar irradiance variability as well as data describing the state of the Sun (in particular its magnetic field) at the relevant epochs.Evidence is accumulating that on the time-scale of the solar cycle or less, variations in solar irradiance are produced mainly by changes in the amount and distribution of magnetic flux on the solar surface. The main solar features contributing to a darkening of the Sun are sunspots, while active-region faculae and the network lead to a brightening. There is also increasing evidence for secular changes of the solar magnetic field and the associated of solar brightness variability. In part the behavior of sun-like stars is used as a guide of such secular changes.Under the assumption that solar irradiance variations are due to solar surface magnetism on all relevant time scales it is possible to reconstruct the irradiance with some reliability from today to around 1874, and with lower accuracy back to the Maunder minimum. One major problem is the decreasing amount and accuracy of the relevant data with age. In this review the various reconstructions of past solar irradiance are presented and the assumptions underlying them are scrutinized.  相似文献   

15.
16.
针对轮廓匹配算法存在的虚定位问题,在轮廓匹配算法的基础上,提出了一个新的分批地磁匹配方法——基于概率数据关联滤波的地磁匹配算法。算法把满足一定条件的相关值作为滤波器的有效量测,把巡航导弹的位置作为状态变量,建立了基于概率数据关联的地磁匹配模型,利用概率数据关联滤波算法计算巡航导弹的位置坐标。仿真结果表明,该算法有效地降低了虚定位发生的概率,正确匹配率、导航效果均优于轮廓匹配算法。  相似文献   

17.
地磁场是地球的固有资源,利用地磁场匹配进行导航是一种新型导航技术.与传统的惯性导航和卫星导航比较,地磁导航具有无积累误差、抗干扰、隐蔽性好、导航信息丰富等优势.文章介绍了地磁导航的3个基本要素,即磁场测量技术、地磁模型以及定位与导航技术.分析了弱磁场磁力仪在地磁导航中的应用及其优缺点,讨论了地磁场模型和地磁匹配算法,展望了地磁导航技术的应用前景.  相似文献   

18.
在二维流场的重构问题中应用特征正交分解(Proper Orthogonal Decomposition,POD)数据处理方法。利用CFD技术计算得到的流场快照对气动力模型进行降阶,然后利用基于POD的降阶模型(Reduced Order Model,ROM)对所需的流场参数进行重构,在快照范围内可以得到高精度的结果,且具有一定的外插能力。在翼型反设计问题中该方法仍然是成功的,通过修正快照向量,利用基于POD降阶模型的数据重构方法,由已知的翼型表面压力分布通过反设计就能够高效精确地得到对应的最优翼型形状,这极大地简化了翼型反设计问题。本文分别在跨声速范围对RAE 2822翼型的流场重构和Korn翼型及NACA 63212翼型的反设计进行了验证,证明了基于POD的流场重构和翼型反设计方法的有效性和高效性。  相似文献   

19.
地磁导航具有可用区域广泛、无累积误差、无源和隐蔽性强等优势,是未来定位导航与授时(PNT)体系中潜在的重要导航定位手段之一。地磁导航技术包括磁场信息的测量、地磁基准图的建立和地磁定位方法的设计3个重要内容。本文主要围绕地磁定位方法,调研总结了当前主流的地磁滤波、地磁匹配和磁场同时定位与构图(SLAM)三类方法的原理及技术发展路线,重点分析了不同方法的优缺点、适用场景、时效性、对磁图和传感器的需求,并对地磁定位方法的发展方向进行了展望。  相似文献   

20.
地磁导航具有可用区域广泛、无累积误差、无源和隐蔽性强等优势,是未来定位导航与授时(PNT)体系中潜在的重要导航定位手段之一。地磁导航技术包括磁场信息的测量、地磁基准图的建立和地磁定位方法的设计3个重要内容。本文主要围绕地磁定位方法,调研总结了当前主流的地磁滤波、地磁匹配和磁场同时定位与构图(SLAM)三类方法的原理及技术发展路线,重点分析了不同方法的优缺点、适用场景、时效性、对磁图和传感器的需求,并对地磁定位方法的发展方向进行了展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号