首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The state of knowledge about the structure and composition of icy satellite interiors has been significantly extended by combining direct measurements from spacecraft, laboratory experiments, and theoretical modeling. The existence of potentially habitable liquid water reservoirs on icy satellites is dependent on the radiogenic heating of the rock component, additional contributions such as the dissipation of tidal energy, the efficiency of heat transfer to the surface, and the presence of substances that deplete the freezing point of liquid water. This review summarizes the chemical evolution of subsurface liquid water oceans, taking into account a number of chemical processes occuring in aqueous environments and partly related to material exchange with the deep interior. Of interest are processes occuring at the transitions from the liquid water layer to the ice layers above and below, involving the possible formation of clathrate hydrates and high-pressure ices on large icy satellites. In contrast, water-rock exchange is important for the chemical evolution of the liquid water layer if the latter is in contact with ocean floor rock on small satellites. The composition of oceanic floor deposits depends on ambient physical conditions and ocean chemistry, and their evolutions through time. In turn, physical properties of the ocean floor affect the circulation of oceanic water and related thermal effects due to tidally-induced porous flow and aqueous alteration of ocean floor rock.  相似文献   

2.
The diverse populations of icy bodies of the outer Solar System (OSS) give critical information on the composition and structure of the solar nebula and the early phases of planet formation. The two principal repositories of icy bodies are the Kuiper belt or disk, and the Oort Cloud, both of which are the source regions of the comets. Nearly 1000 individual Kuiper belt objects have been discovered; their dynamical distribution is a clue to the early outward migration and gravitational scattering power of Neptune. Pluto is perhaps the largest Kuiper belt object. Pluto is distinguished by its large satellite, a variable atmosphere, and a surface composed of several ices and probable organic solid materials that give it color. Triton is probably a former member of the Kuiper belt population, suggested by its retrograde orbit as a satellite of Neptune. Like Pluto, Triton has a variable atmosphere, compositionally diverse icy surface, and an organic atmospheric haze. Centaur objects appear to come from the Kuiper belt and occupy temporary orbits in the planetary zone; the compositional similarity of one well studied Centaur (5145 Pholus) to comets is notable. New discoveries continue apace, as observational surveys reveal new objects and refined observing techniques yield more physical information about specific bodies.  相似文献   

3.
The composition of planetesimals depends upon the epoch and the location of their formation in the solar nebula. Meteorites produced in the hot inner nebula contain refractory compounds. Volatiles were present in icy planetesimals and cometesimals produced in the cold outer nebula. However, the mechanism responsible for their trapping is still controversial. We argue for a general scenario valid in all regions of the turbulent nebula where water condensed as a crystalline ice (Hersant et al., 2004). Volatiles were trapped in the form of clathrate hydrates in the continuously cooling nebula. The epoch of clathration of a given species depends upon the temperature and the pressure required for the stability of the clathrate hydrate. The efficiency of the mechanism depends upon the local amount of ice available. This scenario is the only one so far which proposes a quantitative interpretation of the non detection of N2 in several comets of the Oort cloud (Iro et al., 2003). It may explain the large variation of the CO abundance observed in comets and predicts an Ar/O ratio much less than the upper limit of 0.1 times the solar ratio estimated on C/2001 A2 (Weaver et al., 2002). Under the assumption that the amount of water ice present at 5 AU was higher than the value corresponding to the solar O/H ratio by a factor 2.2 at least, the clathration scenario reproduces the quasi uniform enrichment with respect to solar of the Ar, Kr, Xe, C, N and S elements measured in Jupiter by the Galileo probe. The interpretation of the non-uniform enrichment in C, N and S in Saturn requires that ice was less abundant at 10 AU than at 5 AU so that CO and N2 were not clathrated in the feeding zone of the planet while CH4, NH3 and H2S were. As a result, the 14N/15N ratio in Saturn should be intermediate between that in Jupiter and the terrestrial ratio. Ar and Kr should be solar while Xe should be enriched by a factor 17. The enrichments in C, N and S in Uranus and Neptune suggest that available ice was able to form clathrates of CH4, CO and the NH3 hydrate, but not the clathrate of N2. The enrichment of oxygen by a factor 440 in Neptune inferred by Lodders and Fegley (1994) from the detection of CO in the troposphere of the planet is higher by at least a factor 2.5 than the lower limit of O/H required for the clathration of CO and CH4 and for the hydration of NH3. If CO detected by Encrenaz et al. (2004) in Uranus originates from the interior of the planet, the O/H ratio in the envelope must be around of order of 260 times the solar ratio, then also consistent with the trapping of detected volatiles by clathration. It is predicted that Ar and Kr are solar in the two planets while Xe would be enriched by a factor 30 to 70. Observational tests of the validity of the clathration scenario are proposed.  相似文献   

4.
The transport and exchange of material between bodies in the outer solar system is often facilitated by their exposure to ionizing radiation. With this in mind we review the effects of energetic ions, electrons and UV photons on materials present in the outer solar system. We consider radiolysis, photolysis, and sputtering of low temperature solids. Radiolysis and photolysis are the chemistry that follows the bond breaking and ionization produced by incident radiation, producing, e.g., O2 and H2 from irradiated H2O ice. Sputtering is the ejection of molecules by incident radiation. Both processes are particularly effective on ices in the outer solar system. Materials reviewed include H2O ice, sulfur-containing compounds (such as SO2 and S8), carbon-containing compounds (such as CH4), nitrogen-containing compounds (such as NH3 and N2), and mixtures of those compounds. We also review the effects of ionizing radiation on a mixture of N2 and CH4 gases, as appropriate to Titan’s upper atmosphere, where radiolysis and photolysis produce complex organic compounds (tholins).  相似文献   

5.
Much of our knowledge of planetary surface composition is derived from remote sensing over the ultraviolet through infrared wavelength ranges. Telescopic observations and, in the past few decades, spacecraft mission observations have led to the discovery of many surface materials, from rock-forming minerals to water ice to exotic volatiles and organic compounds. Identifying surface materials and mapping their distributions allows us to constrain interior processes such as cryovolcanism and aqueous geochemistry. The recent progress in understanding of icy satellite surface composition has been aided by the evolving capabilities of spacecraft missions, advances in detector technology, and laboratory studies of candidate surface compounds. Pioneers 10 and 11, Voyagers I and II, Galileo, Cassini and the New Horizons mission have all made significant contributions. Dalton (Space Sci. Rev., 2010, this issue) summarizes the major constituents found or inferred to exist on the surfaces of the icy satellites (cf. Table 1 from Dalton, Space Sci. Rev., 2010, this issue), and the spectral coverage and resolution of many of the spacecraft instruments that have revolutionized our understanding (cf. Table 2 from Dalton, Space Sci. Rev., 2010, this issue). While much has been gained from these missions, telescopic observations also continue to provide important constraints on surface compositions, especially for those bodies that have not yet been visited by spacecraft, such as Kuiper Belt Objects (KBOs), trans-Neptunian Objects (TNOs), Centaurs, the classical planet Pluto and its moon, Charon. In this chapter, we will discuss the major satellites of the outer solar system, the materials believed to make up their surfaces, and the history of some of these discoveries. Formation scenarios and subsequent evolution will be described, with particular attention to the processes that drive surface chemistry and exchange with interiors. Major similarities and differences between the satellites are discussed, with an eye toward elucidating processes operating throughout the outer solar system. Finally we discuss the outermost satellites and other bodies, and summarize knowledge of their composition. Much of this review is likely to change in the near future with ongoing and planned outer planet missions, adding to the sense of excitement and discovery associated with our exploration of our planetary neighborhood.  相似文献   

6.
The past decade has seen a wealth of new data, mainly from the Galilean satellites and Mars, but also new information on Mercury, the Moon and asteroids (meteorites). In parallel, there have been advances in our understanding of dynamo theory, new ideas on the scaling laws for field amplitudes, and a deeper appreciation on the diversity and complexity of planetary interior properties and evolutions. Most planetary magnetic fields arise from dynamos, past or present, and planetary dynamos generally arise from thermal or compositional convection in fluid regions of large radial extent. The relevant electrical conductivities range from metallic values to values that may be only about one percent or less that of a typical metal, appropriate to ionic fluids and semiconductors. In all planetary liquid cores, the Coriolis force is dynamically important. The maintenance and persistence of convection appears to be easy in gas giants and ice-rich giants, but is not assured in terrestrial planets because the quite high electrical conductivity of an iron-rich core guarantees a high thermal conductivity (through the Wiedemann-Franz law), which allows for a large core heat flow by conduction alone. This has led to an emphasis on the possible role of ongoing differentiation (growth of an inner core or “snow”). Although planetary dynamos mostly appear to operate with an internal field that is not very different from (2ρΩ/σ)1/2 in SI units where ρ is the fluid density, Ω is the planetary rotation rate and σ is the conductivity, theoretical arguments and stellar observations suggest that there may be better justification for a scaling law that emphasizes the buoyancy flux. Earth, Ganymede, Jupiter, Saturn, Uranus, Neptune, and probably Mercury have dynamos, Mars has large remanent magnetism from an ancient dynamo, and the Moon might also require an ancient dynamo. Venus is devoid of a detectable global field but may have had a dynamo in the past. Even small, differentiated planetesimals (asteroids) may have been capable of dynamo action early in the solar system history. Induced fields observed in Europa and Callisto indicate the strong likelihood of water oceans in these bodies. The presence or absence of a dynamo in a terrestrial body (including Ganymede) appears to depend mainly on the thermal histories and energy sources of these bodies, especially the convective state of the silicate mantle and the existence and history of a growing inner solid core. As a consequence, the understanding of planetary magnetic fields depends as much on our understanding of the history and material properties of planets as it does on our understanding of the dynamo process. Future developments can be expected in our understanding of the criterion for a dynamo and on planetary properties, through a combination of theoretical work, numerical simulations, planetary missions (MESSENGER, Juno, etc.) and laboratory experiments.  相似文献   

7.
The Sun’s electromagnetic radiation powers our solar system. In the case of the Earth it heats the lands and ocean, maintains our atmosphere, generates clouds, and cycles water. For other planets and minor bodies, similar and appropriate physical processes occur, also powered by the Sun. The Sun varies on all time scales and a precise knowledge of the Sun's irradiance and its variation is essential to our understanding of environments and physical conditions throughout our solar system. Measurements of solar irradiance and its variation can only be made from space, and almost thirty years of observation have now established that the total solar irradiance (TSI) varies by only 0.1 to 0.3%, while certain portions of the solar spectrum, the ultraviolet for example, vary by orders of magnitude more. This paper provides an overview of TSI observations and of spectral irradiance observations from the ultraviolet to the near infrared.  相似文献   

8.
The structure and composition of comet nuclei are mainly altered during two short phases that are separated by a very long hibernation phase. Early evolution—during and immediately after formation—is the result of heating caused by radioactive decay, the most important source being 26Al. Several studies are reviewed, dealing with evolution throughout this phase, calculated by means of 1-D numerical codes that solve the heat and mass balance equations on a fixed spherically symmetric grid. It is shown that, depending on parameters, the interior may reach temperatures above the melting point of water. The models thus suggest that comets are likely to lose the ices of very volatile species during early evolution; ices of less volatile species are retained in the cold subsurface layer. As the initially amorphous ice is shown to crystallize in the interior, some objects may also lose part of the volatiles trapped in amorphous ice. Generally, the outer layers are far less affected than the inner part, resulting in a stratified composition and altered porosity distribution. The second phase of evolution occurs when comet nuclei are deflected into the inner solar system and is dominated by the effect of solar radiation. Now the outer layers are those mostly affected, undergoing crystallization, loss of volatiles, and significant structural changes. If any part of a comet nucleus should retain its pristine structure and composition, it would be well below the surface and also well above the core.  相似文献   

9.
Spectroscopy of Icy Moon Surface Materials   总被引:1,自引:0,他引:1  
Remote sensing of icy objects in the outer solar system relies upon availability of appropriate laboratory measurements. Surface deposits of specific substances often provide our most direct route to understanding interior composition, thereby informing theories of endogenic surface modification, exogenic surface processing and processes involving exchange of material with the interiors. Visible to near-infrared reflectance spectra of properly prepared compounds are required to enable retrieval of surface abundances through linear and nonlinear mixture analysis applied to spacecraft observations of icy bodies. This chapter describes the techniques, conditions and approaches necessary to provide reference spectra of use to theoretical models of icy satellite surface compositions, and summarizes the current state of knowledge represented in the published literature.  相似文献   

10.
The ISO-SWS instrument offering a large wavelength coverage and a resolution well adapted to the solid phase has changed our knowledge of the physical-chemical properties of ices in space. The discovery of many new ice features was reported and the comparison with dedicated laboratory experiments allowed the determination of more accurate abundances of major ice components. The presence of CO2 ice has recently been confirmed with the SWS (Short Wavelength Spectrometer) as a dominant ice component of interstellar grain mantles. The bending mode of CO2 ice shows a particular triple-peak structure which provides first evidence for extensive ice segregation in the line-of-sight toward massive protostars. A comparison of interstellar and cometary ices using recent ISO data and ground-based measurements has revealed important similarities but also indicated that comets contain, beside pristine interstellar material, admixtures of processed material. The investigation of molecules in interstellar clouds is essential to reveal the link between dust in the interstellar medium and in the Solar System. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
Phase Behaviour of Ices and Hydrates   总被引:1,自引:0,他引:1  
The primary volatile ‘rock-forming’ minerals in the icy satellites of the outer solar system include water-ice and various hydrated crystals of methane and ammonia. The rich polymorphism of these substances as a function of pressure and temperature are described in this chapter. This polymorphism has a fundamental influence on the exchange of mass and energy between the core and the surface of icy satellites. We describe the current state-of-the-art in our understanding of the high pressure phase behaviour and the measurements of thermoelastic and transport properties of these substances. In addition we describe the structures and properties of hydrated phases of methanol, sulfuric acid, and various sulfate salts.  相似文献   

12.
Water content and the internal evolution of terrestrial planets and icy bodies are closely linked. The distribution of water in planetary systems is controlled by the temperature structure in the protoplanetary disk and dynamics and migration of planetesimals and planetary embryos. This results in the formation of planetesimals and planetary embryos with a great variety of compositions, water contents and degrees of oxidation. The internal evolution and especially the formation time of planetesimals relative to the timescale of radiogenic heating by short-lived 26Al decay may govern the amount of hydrous silicates and leftover rock–ice mixtures available in the late stages of their evolution. In turn, water content may affect the early internal evolution of the planetesimals and in particular metal-silicate separation processes. Moreover, water content may contribute to an increase of oxygen fugacity and thus affect the concentrations of siderophile elements within the silicate reservoirs of Solar System objects. Finally, the water content strongly influences the differentiation rate of the icy moons, controls their internal evolution and governs the alteration processes occurring in their deep interiors.  相似文献   

13.
In this paper we describe the existing and planned radar measurements of the planetary bodies. The dielectric properties of water ice and other potential surface and subsurface materials are discussed, as well as their dependency on temperature and structure. We then evaluate the performance of subsurface sounding radars using these parameters. Finally we describe some laboratory technique to help interpret the radar data, presenting some results obtained using dielectric spectroscopy methods.  相似文献   

14.
Much of what we know about the atmospheres of the planets and other bodies in the solar system comes from detection of photons over a wide wavelength range, from X-rays to radio waves. In this chapter, we present current information in various categories—measurements of the airglows of the terrestrial planets, the dayglows of the outer planets and satellites, aurora throughout the solar system, observations of cometary spectra, and the emission of X-rays from a variety of planetary bodies.  相似文献   

15.
We present a review of the main physical features of comet nuclei, their birthplaces and the dynamical processes that allow some of them to reach the Sun’s neighborhood and become potentially detectable. Comets are thought to be the most primitive bodies of the solar system although some processing—for instance, melting water ice in their interiors and collisional fragmentation and reaccumulation—could have occurred after formation to alter their primordial nature. Their estimated low densities (a few tenths g?cm?3) point to a very fluffy, porous structure, while their composition rich in water ice and other highly volatile ices point to a formation in the region of the Jovian planets, or the trans-neptunian region. The main reservoir of long-period comets is the Oort cloud, whose visible radius is ~3.3×104 AU. Yet, the existence of a dense inner core cannot be ruled out, a possibility that would have been greatly favored if the solar system formed in a dense galactic environment. The trans-neptunian object Sedna might be the first discovered member that belongs to such a core. The trans-neptunian population is the main source of Jupiter family comets, and may be responsible for a large renovation of the Oort cloud population.  相似文献   

16.
New Horizons: Anticipated Scientific Investigations at the Pluto System   总被引:1,自引:0,他引:1  
The New Horizons spacecraft will achieve a wide range of measurement objectives at the Pluto system, including color and panchromatic maps, 1.25–2.50 micron spectral images for studying surface compositions, and measurements of Pluto’s atmosphere (temperatures, composition, hazes, and the escape rate). Additional measurement objectives include topography, surface temperatures, and the solar wind interaction. The fulfillment of these measurement objectives will broaden our understanding of the Pluto system, such as the origin of the Pluto system, the processes operating on the surface, the volatile transport cycle, and the energetics and chemistry of the atmosphere. The mission, payload, and strawman observing sequences have been designed to achieve the NASA-specified measurement objectives and maximize the science return. The planned observations at the Pluto system will extend our knowledge of other objects formed by giant impact (such as the Earth–moon), other objects formed in the outer solar system (such as comets and other icy dwarf planets), other bodies with surfaces in vapor-pressure equilibrium (such as Triton and Mars), and other bodies with N2:CH4 atmospheres (such as Titan, Triton, and the early Earth).  相似文献   

17.
Electromagnetic induction is a powerful technique to study the electrical conductivity of the interior of the Earth and other solar system bodies. Information about the electrical conductivity structure can provide strong constraints on the associated internal composition of planetary bodies. Here we give a review of the basic principles of the electromagnetic induction technique and discuss its application to various bodies of our solar system. We also show that the plasma environment, in which the bodies are embedded, generates in addition to the induced magnetic fields competing plasma magnetic fields. These fields need to be treated appropriately to reliably interpret magnetic field measurements in the vicinity of solar system bodies. Induction measurements are particularly important in the search for liquid water outside of Earth. Magnetic field measurements by the Galileo spacecraft provide strong evidence for a subsurface ocean on Europa and Callisto. The induction technique will provide additional important constraints on the possible subsurface water, when used on future Europa and Ganymede orbiters. It can also be applied to probe Enceladus and Titan with Cassini and future spacecraft.  相似文献   

18.
Almost all theoretical and numerical models for the modulation of cosmic ray in the heliosphere are based on Parker's transport equation which contains all the important basic physical processes. The relative importance of the various mechanisms is however not established and may vary significantly over 22 years. The simultaneous measurements of solar wind parameters, heliospheric magnetic field properties and cosmic rays over a wide range of energies and positions in the heliosphere have brought the realization that modulation is much more complicated than what the original drift models predicted. In the process the sophistication of models based on solving Parker's equation has increased by orders of magnitude. A short review of the global modulation of cosmic rays is given from a theoretical and modelling point of view.  相似文献   

19.
The formation of the giant planets seems to be best explained by accretion of planetesimals to form massive cores, which in the case of Jupiter and Saturn were able to capture nebular gas. However, the timescale for accretion of such cores has been a problem. Accretion in the outer solar system differs qualitatively from planetary growth in the terrestrial region, as the larger embryo masses and lower orbital velocities make bodies more subject to gravitational scattering. The planetesimal swarm in the outer nebula may be seeded by earlier-formed large bodies scattered from the region near the nebular “snow line”. Such a seed body can experience rapid runaway growth undisturbed by competitors; the style of growth is not oligarchy, but monarchy.  相似文献   

20.
Enzian  Achim 《Space Science Reviews》1999,90(1-2):131-139
The gas flux from a volatile icy-dust mixture is computed using a comet nucleus thermal model in order to study the evolution of CO outgassing during several apparitions from long-period Comet Hale-Bopp and short-period Comet Wirtanen. The comet model assumes a spherical, porous body containing a dust component, one major ice component (H2O), and one minor ice component of higher volatility (CO). The initial chemical composition is assumed to be homogeneous. The following processes are taken into account: heat and gas diffusion inside the rotating nucleus; release of outward diffusing gas from the comet nucleus; chemical differentiation by sublimation of volatile ices in the surface layers and recondensation of gas in deeper, cooler layers. A 2-D time dependent solution is obtained through the dependence of the boundary conditions on the local solar illumination as the nucleus rotates. The model for Comet Hale-Bopp was compared with observational measurements (Biver et al., 1999). The best agreement was obtained for a model with amorphous water ice and CO, assuming that a part of the latter is trapped by the water ice, another part is condensed as an independent ice phase. The model confirms that sublimation of CO ice at large heliocentric distance produces a gradual increase in the comet's activity as it approaches the Sun. Crystallization of amorphous water ice begins at 7 AU from the Sun, but no outbursts were found. Seasonal effects and thermal inertia of the nucleus material lead to larger CO outgassing rates as the comet recedes from the Sun. In the second part of this work the model was run with the orbital parameters of Comet Wirtanen. Unlike Comet Hale-Bopp, the predicted CO outgassing from Comet Wirtanen is almost constant throughout its orbit. Such behavior can be explained by a thermally evolved and chemically differentiated comet nucleus. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号