首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 51 毫秒
1.
Interplanetary outflows from coronal mass ejections (ICMEs) are structures shaped by their magnetic fields. Sometimes these fields are highly ordered and reflect properties of the solar magnetic field. Field lines emerging in CMEs are presumably connected to the Sun at both ends, but about half lose their connection at one end by the time they are observed in ICMEs. All must eventually lose one connection in order to prevent a build-up of flux in the heliosphere; but since little change is observed between 1 AU and 5 AU, this process may take months to years to complete. As ICMEs propagate out into the heliosphere, they kinematically elongate in angular extent, expand from higher pressure within, distort owing to inhomogeneous solar wind structure, and can compress the ambient solar wind, depending upon their relative speed. Their magnetic fields may reconnect with solar wind fields or those of other ICMEs with which they interact, creating complicated signatures in spacecraft data.  相似文献   

2.
This paper reviews solar flows and magnetic fields observed at the photospheric level. We first present the context in which these observations are performed. We describe the various temporal and spatial scales involved, and the coupling between them. Then we present small-scale flows, mainly supergranulation and flows around active regions. Flows at the global scale are then reviewed, again with emphasis on the flows, i.e. differential rotation, torsional oscillation and meridional circulation. In both small- and global-scale we discuss the coupling between flow fields and magnetic field and give an overview of observational techniques. Finally, the possible connection between studies of solar activity and stellar activity is briefly discussed.  相似文献   

3.
An overview is given of the observational and the theoretical methods used to investigate solar magnetic fields. It includes an introduction to the Stokes parameters, their radiative transfer in the presence of a magnetic field, and empirical techniques used to measure various properties of solar magnetic features, such as the strength and direction of the magnetic field, magnetic flux, temperature, velocity, size and lifetime. The MHD equations are introduced and some of the most common simplifications used to describe solar magnetic features are outlined.The application of these techniques to small-scale magnetic features is surveyed. The results of empirical and theoretical investigations of small-scale solar magnetic features are reviewed. Current views on their magnetic structure, thermal stratification, velocity field, size, distribution and evolution are presented. Finally, some open questions concerning small-scale solar magnetic fields are listed.  相似文献   

4.
Electromagnetic induction is a powerful technique to study the electrical conductivity of the interior of the Earth and other solar system bodies. Information about the electrical conductivity structure can provide strong constraints on the associated internal composition of planetary bodies. Here we give a review of the basic principles of the electromagnetic induction technique and discuss its application to various bodies of our solar system. We also show that the plasma environment, in which the bodies are embedded, generates in addition to the induced magnetic fields competing plasma magnetic fields. These fields need to be treated appropriately to reliably interpret magnetic field measurements in the vicinity of solar system bodies. Induction measurements are particularly important in the search for liquid water outside of Earth. Magnetic field measurements by the Galileo spacecraft provide strong evidence for a subsurface ocean on Europa and Callisto. The induction technique will provide additional important constraints on the possible subsurface water, when used on future Europa and Ganymede orbiters. It can also be applied to probe Enceladus and Titan with Cassini and future spacecraft.  相似文献   

5.
This paper is a review of our observational knowledge on solar magnetic fields. In Section 1 we make an attempt to summarize all observations of the general magnetic field (m.f.) of the Sun. Section 2 deals with the local m.f. at low latitudes and their connection with some features on the disk. The m.f. of sunspots and their peculiar character are considered in Section 3. The last section (4) is concerned with m.f. in sunspot groups, their changes and connections with solar activity.  相似文献   

6.
A review is given of both observational and theoretical results concerning the latitudinal structure of the solar wind and interplanetary magnetic field. Observations are reported on the solar wind plasma and magnetic fields, obtained both from direct satellite measurements and indirect methods, such as the observation of comet tails, radio scintillations, the study of the polar geomagnetic field and the semi-annual variation of geomagnetic activity. Results of theoretical work, both on three-dimensional modelling of the solar wind and on gas-magnetic field interactions in the solar corona are summarized. Finally, an attempt is made to compare available observations and theories. This points to the open questions which, to be settled, will need direct observations of plasma and magnetic field at high heliographic latitudes.  相似文献   

7.
This paper reviews the principal results of direct measurements of the plasma and magnetic field by spacecraft close to the Earth (within the heliocentric distance range 0.7–1.5 AU). The paper gives an interpretation of the results for periods of decrease, minimum and increase of the solar activity. The following problems are discussed: the interplanetary plasma (chemical composition, density, solar wind flow speed, temperature, temporal and spatial variation of these parameters), the interplanetary magnetic field (intensity, direction, fluctuations and its origin), some derived parameters characterizing the physical condition of the interplanetary medium; the quasi-stationary sector structure and its connection with solar and terrestrial phenomena; the magnetohydrodynamic discontinuities in the interplanetary medium (tangential discontinuities and collisionless shock waves); the solar magnetoplasma interaction with the geomagnetic field (the collisionless bow shock wave, the magnetosheath, the magnetopause, the Earth's magnetic tail, the internal magnetosphere characteristics), the connection between the geomagnetic activity and the interplanetary medium and magnetosphere parameters; peculiarities in behaviour of the interplanetary medium and magnetosphere during geomagnetic storms; energetic aspects of the geomagnetic storms.  相似文献   

8.
9.
Helioseismology uses solar p-mode oscillations to probe the structure of the solar interior. The modifications of p-mode properties due to the presence of solar magnetic fields provide information on the magnetic fields in the solar interior. Here we review some of results in helioseismology on the magnetic fields in the solar convection zone. We will also discuss a recent result on the magnetic fields at the base of the convection zone. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
Embedded in a large mass density and strong interplanetary magnetic field solar wind environment and equipped with a magnetic field of minor strength, planet Mercury exhibits a small magnetosphere vulnerable to severe solar wind buffeting. This causes large variations in the size of the magnetosphere and its associated currents. External fields are of far more importance than in the terrestrial case and of a size comparable to any internal, dynamo-generated field. Induction effects in the planetary interior, dominated by its huge core, are thought to play a much more prominent role in the Hermean magnetosphere compared to any of its companions. Furthermore, the external fields may cause planetary dynamo amplification much as discussed for the Galilean moons Io and Ganymede, but with the ambient field generated by the dynamo and its magnetic field-solar wind interaction.  相似文献   

11.
Coronal plumes are believed to be essentially magnetic features: they are rooted in magnetic flux concentrations at the photosphere and are observed to extend nearly radially above coronal holes out to at least 15 solar radii, probably tracing the open field lines. The formation of plumes itself seems to be due to the presence of reconnecting magnetic field lines and this is probably the cause of the observed extremely low values of the Ne/Mg abundance ratio. In the inner corona, where the magnetic force is dominant, steady MHD models of coronal plumes deal essentially with quasi-potential magnetic fields but further out, where the gas pressure starts to be important, total pressure balance across the boundary of these dense structures must be considered. In this paper, the expansion of plumes into the fast polar wind is studied by using a thin flux tube model with two interacting components, plume and interplume. Preliminary results are compared with both remote sensing and solar wind in situ observations and the possible connection between coronal plumes with pressure-balance structures (PBS) and microstreams is discussed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

12.
Kuhn  J.R.  Floyd  L.  Fröhlich  C.  Pap  J.M. 《Space Science Reviews》2000,94(1-2):169-176

Despite 20 years of total solar irradiance measurements from space, the lack of high precision spatially resolved observations limits definitive answers to even simple questions like ``Are the solar irradiance changes caused solely by magnetic fields perturbing the radiative flux at the photosphere?" More subtle questions like how the aspheric structure of the sun changes with the magnetic cycle are only now beginning to be addressed with new tools like p-mode helioseismology. Solar 5-min oscillation studies have yielded precise information on the mean radial interior solar structure and some knowledge about the rotational and thermal solar asphericity. Unfortunately this progress has not been enough to generate a self-consistent theory for why the solar irradiance and luminosity vary with the magnetic cycle. We need sharper tools to describe and understand the sun's global aspheric response to its internal dynamo, and we need to be able to measure the solar cycle manifestation of the magnetic cycle on entropy transport from the interior to the photosphere in much the same way that we study the fundamentally more complex problem of magnetic flux transport from the solar interior. A space experiment called the Solar Physics Explorer for Radius, Irradiance and Shape (SPHERIS) and in particular its Astrometric and Photometric Telescope (APT) component will accomplish these goals.

  相似文献   

13.
The interplanetary magnetic field. Solar origin and terrestrial effects   总被引:1,自引:0,他引:1  
Many observations related to the large-scale structure of the interplanetary magnetic field, its solar origin and terrestrial effects are discussed. During the period observed by spacecraft the interplanetary field was dominated by a sector structure corotating with the sun in which the field is predominantly away from the sun (on the average in the Archimedes spiral direction) for several days (as observed near the earth), and then toward the sun for several days, etc. The average sector appears to be a coherent entity with internal structure such that its preceding portion is more active than its following portion. Cosmic rays corotate with the interplanetary field, and there are differential flows associated with the sector pattern. Profound effects on geomagnetic activity and the radiation belts are produced as the sector pattern rotates past the earth. The solar origin of the sector pattern is discussed. The solar source may be associated with the large-scale weak background photospheric fields observed with the solar magnetograph. It is suggested that there may be a rather continual relation between this solar structure and terrestrial responses, of which the recurring M-Region geomagnetic storms are just the most prominent example.  相似文献   

14.
We present an overview of how the principal physical properties of magnetic flux which emerges from the toroidal fields in the tachocline through the turbulent convection zone to the solar surface are linked to solar activity events, emphasizing the effects of magnetic field evolution and interaction with other magnetic structures on the latter. We compare the results of different approaches using various magnetic observables to evaluate the probability of flare and coronal mass ejection (CME) activity and forecast eruptive activity on the short term (i.e. days). Then, after a brief overview of the observed properties of CMEs and their theoretical models, we discuss the ejecta properties and describe some typical magnetic and composition characteristics of magnetic clouds (MCs) and interplanetary CMEs (ICMEs). We review some individual examples to clarify the link between eruptions from the Sun and the properties of the resulting ejecta. The importance of a synthetic approach to solar and interplanetary magnetic fields and activity is emphasized.  相似文献   

15.
16.
Sunspots, seen as cool regions on the surface of the Sun, are a thermal phenomenon. Sunspots are always associated with bipolar magnetic loops that break through the solar surface. Thus to explain the origin of sunspots we have to understand how the magnetic field originates inside the Sun and emerges at its surface. The field predicted by mean-field dynamo theories is too weak by itself to emerge at the surface of the Sun. However, because of the turbulent character of solar convection the fields generated by dynamo are intermittent – i.e., concentrated into ropes or sheets with large spaces in between. The intermittent fields are sufficiently strong to be able to emerge at the solar surface, in spite of the fact that their mean (average) value is weak. It is suggested here that magnetic fields emerge at the solar surface at those random times and places when the total magnetic field (mean field plus fluctuations) exceeds the threshold for buoyancy. The clustering of coherently emerged loops results in the formation of a sunspot. A non-axisymmetric enhancement of the underlying magnetic field causes in the clustering of sunspots forming sunspot groups, clusters of activity and active longitudes. The mean field, which is not directly observable, is also important, being responsible for the ensemble regularities of sunspots, such as Hale's law of sunspot polarities and the 11-year periodicity.  相似文献   

17.
Computational modeling of magnetic fields in solar active regions   总被引:2,自引:0,他引:2  
The magnetic field plays an important role in various solar activities. This paper reviews techniques for computational modeling of magnetic fields in solar active regions. The input data are photospheric magnetic fields supplied by magnetograph observations. The field above the photosphere is computed by assuming an equation for the magnetic field. Three classes of magnetic fields, namely current-free fields, constant- force-free fields, and general force-free fields are considered. Their physical/mathematical significances and computational procedures are systematically presented.  相似文献   

18.
We review some longstanding scientific mysteries related to solar magnetism, with final attention to the mystery of the “turbulent diffusion” essential for the theoretical α ω-dynamo that is believed to be the source of the magnetic fields of the Sun. Fundamental difficulties with the concept of turbulent diffusion of magnetic fields suggest that the solar dynamo problem needs to be reformulated. An alternative dynamo model is proposed, but it remains to be shown that the model can provide the quantitative aspects of the cyclic magnetic fields of the Sun.  相似文献   

19.
A new view of the ring current as an active element in the geospace system has emerged in which the ring current responds not only to changing convection electric fields imposed by solar wind interactions but to internal dynamics of the magnetosphere-ionosphere-atmosphere (geospace) system. Variations in the plasma sheet density, temperature and composition, saturation of the polar cap potential drop (and presumably the cross-tail potential drop), modifications to the imposed convection potential in the inner magnetosphere due to ring current shielding effects, the presence of a pre-existing ring current population, storm-substorm coupling, and strong convection with and without accompanying substorm activity all have an impact on the ring current strength, formation and loss. All of these internal processes imply that the geoeffectiveness of a solar wind driver cannot be predicted on the basis of the characteristics of the driver alone but must reflect key aspects of the dynamically changing geospace environment, itself. This review gives a summary of new information on ring current input and decay processes focusing on implications for the global geospace response to solar wind drivers during magnetic storms and on open questions that can be addressed with new ENA imaging techniques.  相似文献   

20.
Predicting the behavior of a solar cycle after it is well underway (2–3 years after minimum) can be done with a fair degree of skill using auto-regression and curve fitting techniques that don’t require any knowledge of the physics involved. Predicting the amplitude of a solar cycle near, or before, the time of solar cycle minimum can be done using precursors such as geomagnetic activity and polar fields that do have some connection to the physics but the connections are uncertain and the precursors provide less reliable forecasts. Predictions for the amplitude of cycle 24 using these precursor techniques give drastically different values. Recently, dynamo models have been used directly with assimilated data to predict the amplitude of sunspot cycle 24 but have also given significantly different predictions. While others have questioned both the predictability of the solar cycle and the ability of current dynamo models to provide predictions, it is clear that cycle 24 will help to discriminate between some opposing dynamo models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号