首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
张杰  王发民 《宇航学报》2007,28(1):203-208
用计算流体力学和风洞试验的方法对以锥导乘波体为基础生成的高超声速乘波飞行器的气动性能进行了研究。结果表明,以马赫数6,攻角4度为设计状态的乘波体,在马赫数5~7,攻角4~6度的范围内,都具有良好的气动特性,升阻比接近4。最后,提出了一个简单的以参考温度方法为基础的粘性阻力分析方法。该方法配合使用风洞试验和计算流体的结果,可以用来验证计算流体中难以计算准确的粘性阻力,也可以用来分析在风洞试验难以直接得到的粘性阻力。对于工程上的粘性阻力分析是一个有用的办法。  相似文献   

2.
李维东  丁海河  王发民 《宇航学报》2010,31(5):1283-1288
乘波飞行器在低马赫数飞行状态下的气动性能是近空间飞行器设计和研究人员关心的 问题之一。本文以M=3,设计飞行高度H=15 km为设计点,最大升阻比为优化目标,并通过 满足一定的有效载荷容积,气动热防护和气动操纵的要求进行了工程化设计后得到的锥导乘 波体为研究对象,借助数值模拟和风洞实验技术相结合的研究手段对乘波飞行器在跨声速和 超声速飞行阶段的气动性能进行了探讨。研究结果表明,乘波飞行器在该飞行阶段的气动性 能与前缘所处的气动状态密切相关。
  相似文献   

3.
基于类咽式进气道的高超声速飞行器一体化设计   总被引:3,自引:0,他引:3  
针对吸气式高超声速飞行器高空巡航飞行时净推力和升力不足的难题,探索了一种基于类咽式进气道的高超声速飞行器一体化设计方法。该方法耦合了具有高升阻比特性的乘波机体和气流压缩性能优异的三维内收缩进气道,获得了一种气动性能较优的高超声速飞行器一体化构型。在设计过程中,对一种咽式进气道的几何外形和激波系结构进行了适当改变,得到了能与楔形乘波前体进行一体化设计的类咽式进气道构型,并采用遗传算法对进气道参数进行了优化;以所得到的进气道和乘波体为基础对飞行器整体构型进行了飞行器内外流一体化设计。无黏计算所得流场与理论设计吻合良好,有黏计算结果表明该飞行器在马赫数7时最大升阻比达到3.4,具有良好的气动性能。  相似文献   

4.
为解决高超声速飞行器在低/跨/超声速时气动特性不佳的问题,实现水平起降、跨速域飞行的目标,设计了一种宽速域变构型高超声速飞行器。采用数值计算的方法对飞行器的低速、超声速和高超声速气动特性和典型流场进行了研究分析,得到了升力系数、阻力系数和升阻比随攻角和马赫数的变化规律。结果表明,飞行器在低速和高超声速时的气动特性较好,最大升阻比分别为15.37和4.08,低速时连接翼提供了高升力,高超声速时乘波效果显著;超声速时,阻力系数和升阻比受马赫数影响较大,最大升阻比为4.8。数值计算的结果表明飞行器在全速域范围内气动特性较好,在保证高超声速良好气动特性的前提下,提升了低/跨/超声速性能。  相似文献   

5.
带控制舵双锥体气动力工程计算方法研究   总被引:5,自引:3,他引:5  
马强  唐伟  张鲁民 《宇航学报》2003,24(6):552-554
利用“部件叠加法”发展了一套可以计算带控制舵机动飞行器在超声速和高超声速飞行时的纵横向气动力的工程计算方法。通过对干扰因子和等效攻角等概念的引入,并根据一些数值计算解和风洞试验结果,考虑了舵-体、体-舵间的气动干扰,从而可以计算飞行器组合体的气动力。  相似文献   

6.
航天器返回舱再入过程中,高马赫数造成激波层内气体温度急剧升高,由此导致的化学非平衡效应对返回舱气动特性将产生显著影响。而飞行高度和速度的变化影响着化学非平衡过程,进而改变对飞行器气动特性的影响程度。文章通过求解三维Navier-Stokes流体动力学方程,利用耦合化学反应动力学模型对返回舱再入开展数值研究与机理分析,获得量热完全气体模型和化学非平衡气体模型的气动力预测值,分析飞行条件变化时化学非平衡效应对气动特性的影响规律。根据Apollo返回舱的AS-202飞行试验数据验证了计算模型与数值方法。对返回舱的模拟结果表明,高度不变、马赫数增大时,完全气体模型的气动特性预测值不变,化学非平衡效应影响下的轴向力系数、法向力系数和俯仰力矩系数与完全气体预测值的偏差均增大,化学非平衡效应增强;马赫数不变、高度增大时,化学非平衡效应造成的气动力预测值偏差也增大,配平攻角差值略有增加,化学非平衡效应同样增强。机理分析发现,飞行条件变化所造成的化学非平衡流场和压力分布变化是影响气动力变化的主要原因。  相似文献   

7.
针对类Clipper再入返回飞行器的气动特性,采用近似反设计的方法,在飞行器外包络等约束条件下,通过形状控制函数,计算出类Clipper飞船的气动外形。基于计算流体动力学(CFD)数值模拟方法,研究分析类Clipper再入返回飞行器在不同高度、不同马赫数和不同攻角下的全空域/速域气动特性变化规律,并结合不同飞行状态下的压心位置探讨飞行器的稳定性。结果表明:类Clipper再入返回飞行器在不同飞行状态下能够具有良好的气动特性,最大升阻比可达1.1以上,属于中等升阻比再入,总体呈现出良好的静稳定性,可在未来作为具有可重复使用再入返回飞行器的方案之一。  相似文献   

8.
变结构近空间飞行器大飞行包络控制特性研究   总被引:8,自引:0,他引:8  
针对近空间飞行器大包络、多任务模式飞行运动,结合通用高超声速飞行器确立了近空间飞行器不同飞行阶段的机体结构,详细建立了气动参数由攻角、马赫数与控制舵面偏转最表示的12状态动力学方程,绘制了不同飞行阶段气动参数随攻角、马赫数的变化曲线,建立了近空间飞行器的大包络运动控制模型,而后研究了不同机体结构与飞行状态下的控制特性和各通道耦合性质,表明该系统可以有效用于全程强鲁棒稳定飞行控制系统的设计与仿真测试,充分体现了近空间飞行器非线性、时变、耦合等飞行运动特点,仿真验证表明了研究结果符合现有分析结果.  相似文献   

9.
针对高超声速飞行器翼面前缘的热防护,文章设计了一种基于热管的半主动金属热防护系统。设计中使用工程估算方法预测了翼面前缘的气动热环境,并采用有限元法对高温合金翼面前缘结构进行了热固耦合分析和强度考核。分析结果表明:在马赫数为5~8的飞行状态下,热管可以有效地降低高超声速飞行器翼面前缘峰值温度达23%~31%,且呈现飞行马赫数越高则峰值温度降低幅度越大的趋势;同时热管还可以降低翼面前缘结构温差达90%以上,从而极大地减小由于温差而导致的热应变和内部应力。因此,将基于热管的半主动金属热防护系统应用于高超声速飞行器翼面前缘可以真正实现结构防热一体化,有助于获得较好的防热和减重效果。  相似文献   

10.
对头罩气动热辐射传输效应对红外探测系统的影响进行了研究。用四阶龙格-库塔法对头罩内传输的辐射光线进行追迹,根据理想光学系统成像特性对从头罩出射后在头罩后方理想光学系统中传输的空间辐射光线进行追迹。对头罩气动热辐射(温度场和光线)进行离散处理,建立了头罩内外表面辐射能量的计算模型,获得探测器各单元接收的头罩自身干扰辐射通量分布。仿真计算结果表明:头罩温度随飞行马赫数增大而上升,反之亦然;探测单元接收的头罩自身干扰辐射通量随飞行时间先增后减;气动热噪声随飞行时间先增后降,随头罩温度升高而增大。计算所得气动热噪声与产品实际采集的相符,方法正确。  相似文献   

11.
周军  周敏  林鹏 《宇航学报》2012,33(7):870-875
针对高超声速飞行器严重气动非线性特性给控制系统设计提出的高要求,基于推广的随控布局思想,从控制系统设计角度对高超声速飞行器总体提出气动非线性程度低的优化设计指标。引入高超声速飞行器气动非线性特性度量——非线性度的定义,通过气动工程估算建立非线性度与飞行器总体外形参数关系的表征模型,将非线性度表示为总体外形参数的函数;采用遗传算法求解以总体外形参数为决策变量和以非线性度最小为目标函数的优化问题;最终确定随控优化思想下的高超声速飞行器总体优化策略。算例分析表明,本文提出的总体随控优化方法对于改善高超声速飞行器的气动非线性特性简单有效。  相似文献   

12.
针对高超声速飞行器面临的严重气动热集中、累积和时变问题,从气动热耗散、输运和转换三个方面,分别论述了被动热耗散材料、结构和主动热耗散技术,基于高导热材料、热管和工质对流的热输运技术,以及再生转换和热电转换技术的研究现状及其在高超声速飞行器上的应用案例,提出了上述技术在面临高超声速气动热时存在的问题。最后,针对高超声速飞行器气动热耗散、输运和转换技术的发展趋势进行了展望。  相似文献   

13.
新型高超声速飞行器的气动设计技术探讨   总被引:3,自引:1,他引:2  
蔡巧言  杜涛  朱广生 《宇航学报》2009,30(6):2086-2091
气动技术是高超声速飞行器的重要支撑技术。目前高超声速飞行器迅速发展,飞行器向外形 复杂化、大气层滑翔飞行方向发展。高超声速飞行器飞行时间加长,飞行距离延长。新型高 超声速飞行器的迅速发展向空气动力学领域提出了众多高难度的问题,需要研究新的技术加 以解决。结合高超声速飞行器发展的方向和一些典型项目的气动需求,针对高超声速飞 行器可能的新型气动布局和相应的气动设计技术进行了探讨。
  相似文献   

14.
刘昕  邓小刚  毛枚良 《宇航学报》2006,27(2):157-161
为提高高超声速条件下飞行器表面热环境的计算精度,发展了高精度算法WCNS-E-5,并开展了热流密度分布的数值计算研究.该算法采用的是五阶精度加权显式非线性格式,结合四阶精度的二阶偏导数差分近似、四阶精度的边界格式,同时还对网格偏导数及温度梯度也离散为四阶精度.通过求解三维Navier-Stokes方程,数值研究了高超声速飞行器外形如钝锥和双椭球体的物面热流密度分布.模拟结果表明,这种保证全流场高精度的WCNS-E-5得到的流场图像清晰、真实.与通常的二阶算法MUSCL对比,WCNS-E-5具有更高的流线分辨率,获得的热流密度更接近于实验测得分布.  相似文献   

15.
针对吸气式高超声速巡航飞行器建立了纵向平面内的二维轨迹优化模型(包括火箭助推段和吸气式飞行段),其中大气模型、气动力模型和发动机模型均建立了比较详细的模型,能够比较全面、准确地描述吸气式高超声速巡航飞行器的特征;基于配点法建立了适用于高超声速巡航飞行器助推-巡航轨迹优化的方法,在求解非线性规划时引入了规范化处理、稀疏分析和偏导数计算方法等,以提高优化效率;对吸气式高超声速飞行器助推-巡航轨迹进行了优化研究,分析了典型设计参数变化对最优轨迹的影响。仿真结果表明:所建立的方法能够快速、高精度求解吸气式高超声速巡航飞行器轨迹优化问题,并且能够方便地分析设计参数变化对最优轨迹的影响,可用于吸气式高超声速飞行器飞行剖面设计与优化。  相似文献   

16.
吴大方  商兰  高镇同  蒲颖 《宇航学报》2015,36(9):1083-1092
针对高超声速飞行器面临极端高温热环境、飞行器外壳单侧面受热以及温度历程非线性时变的特点,自行设计并建立辐射式极端高温氧化环境下的单侧面试验加热装置,实现了1700℃高温有氧环境下对高超声速飞行器热防护材料的隔热性能试验测试。同时,对轻质陶瓷材料试验件和新型陶瓷、纳米材料复合结构在高达1700℃的高温氧化环境下的隔热性能进行试验测试,并对不同材料及其组合模式进行对比分析,优选高效能的隔热方案,发现陶瓷、纳米材料复合结构试验件比单层轻质陶瓷材料试验件的隔热效果提高了约50%。另外,生成了极端高温非线性时变热环境,并进行相应的隔热性能试验。通过建立极端高温、有氧、单侧面加热、非线性时变热环境试验系统及其实际应用研究,为高超声速飞行器的热防护设计提供重要的试验手段。  相似文献   

17.
高超声速飞行器气动/隐身优化设计方法   总被引:1,自引:0,他引:1       下载免费PDF全文
焦子涵  邓帆  刘辉  陈林  付秋军  尘军 《宇航学报》2016,37(9):1031-1040
针对高超声速飞行器气动布局设计中气动设计与隐身设计矛盾的问题,采用高精度气动和隐身计算方法,建立了基于直接全局优化算法、二次曲线参数化方法和Kriging代理模型的多学科优化设计平台,并对典型高超声速布局升力体外形开展气动/隐身一体化优化设计研究。结果表明:升力体布局典型状态下升阻比由3.13提高到3.69,考虑垂直极化和水平极化状态,俯仰±30°的雷达散热截面(RCS)均值下降60%以上,表明该平台具有良好的寻优能力,风洞试验结果验证了优化算法的可行性;高超声速飞行器的机身和翼/舵等部件具有显著的绕射特性,物理光学法等高频算法不能准确捕捉前后缘绕射,应当采用矩量法计算其RCS特性;高超声速飞行器的垂直极化和水平极化的RCS特性差异巨大,在设计中应当予以考虑。  相似文献   

18.
惠俊鹏  杨超  杨勇 《宇航学报》2010,31(12):2644-2650
高超声速气动加热会严重影响飞行器结构的颤振特性,本文开展了采用分布式压电驱动器的热颤振主动抑制方法研究。以某飞行器小展弦比翼面为研究对象,进行了常温和热载荷边界条件下的结构振动和颤振分析。在此基础上,对频域非定常气动力进行有理函数拟合,建立包含压电驱动器的翼面耦合结构系统状态空间形式的运动方程;对典型热载荷边界条件下的被控对象设计颤振主动抑制控制律,分别设计出LQG及PID控制器;对比分析了系统开、闭环颤振特性。结果表明,通过主动控制律的实施,达到了热颤振主动抑制的目的,验证了这种颤振主动抑制方法的有效性  相似文献   

19.
赵良玉  雍恩米  王波兰 《宇航学报》2020,41(10):1239-1250
为了支撑我国反临近空间高超声速飞行器相关领域的基础研究和工程研制,在分析典型临近空间高超声速目标飞行特性和作战任务剖面的基础上,综述了目标预警探测、轨迹跟踪预测、制导控制方法、拦截攻击策略四个方面的若干研究成果,讨论了每个方面存在的技术难题和可行的解决方案,并建议从天/临/空/地/海体系预警、红外多模复合敏感、可攻击区轨迹预测、直/气复合等先进控制、协同拦截防御等方面给予重点研究。  相似文献   

20.
计算了某高超音速火箭的气动特性 ,并用风洞试验数据进行比较 ,验证了计算方法是可靠的。在此基础上 ,用该方法计算了高超音速导弹各种常见外形的气动特性 ,形成数据库 ,便于今后在工程上应用  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号