首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 375 毫秒
1.
添加降速剂和调节RDX/AP含量是调节NEPE推进剂燃速的两种常用途径。采用水下声发射燃速测试仪、密闭燃烧器、BSF φ75 mm发动机等测试方法,研究了低燃速NEPE推进剂静态高压燃烧性能规律和发动机动态高压燃烧稳定性。研究发现,NEPE推进剂的中低压区燃速随着降速剂含量增大而显著降低,高压区燃速降低幅度相对较小,燃速-压强(r-p)曲线在15 MPa和45 MPa出现两个拐点,而且降低RDX含量对降低高压段燃速作用显著。BSF φ75 mm发动机试车结果表明,低RDX含量的C1配方(28%)最大工作压强不超过20 MPa,而高RDX含量(38%)的C4配方最大工作压强达到30 MPa。发动机稳定燃烧的最大压强随NEPE推进剂的燃速降低而下降,主要原因是低燃速推进剂铝粉燃烧效率降低使凝聚相燃烧产物含量和粒度增大。  相似文献   

2.
在价电子燃烧模型的基础上引进分形理论,提出复合固体推进剂的价电子分形燃烧模型,在此基础上进行了高能固体推进剂燃速和压强指数的模拟计算,研究了固体填料粒径和压力对燃速的影响规律。结果表明,价电子分形燃烧模型适用于高能固体推进剂的燃烧性能计算,燃速及压强指数模拟计算结果与测试结果吻合较好,大部分误差在±10%范围以内。  相似文献   

3.
利用DSC-TG联用和燃速测试等方法,从降低CMDB推进剂和AP类复合推进剂压强指数的燃速调节剂中,筛选出了纳米PbO、QC、C及SEA、Fe2O3、Co3O4等燃速调节剂,并考察了这些燃速调节剂对NEPE推进剂燃烧性能的影响。通过分析两类燃速调节剂发挥作用的主要压强区间及其对推进剂燃速的影响趋势,对两类燃速调节剂进行了复配研究。试验结果表明,复合调节剂ZH-2(由纳米过渡金属氧化物、铅/铜盐等复配而成)使NEPE推进剂高压(10~25 MPa)燃速压强指数由0.78降低至0.62,而且在宽压强范围内消除了压强指数的拐点。  相似文献   

4.
采用水下声发射法测试了推进剂静态燃速,用线性回归法计算了推进剂燃速压强指数;研究了GAP/CL-20高能固体推进剂中增塑比及固体组分AP、CL-20、Al粉粒度等配方组成因素对燃烧性能的影响。研究结果表明,增塑比一定范围内的变化不会对推进剂燃烧性能产生显著影响,其燃速和燃速压强指数基本不变;CL-20粒度减小或AP粒度增加均会导致燃速不同程度的降低,Al粒度减小也会使燃速减小,但在达到一定程度后,燃速又增加;推进剂燃速压强指数随CL-20、Al粉粒度减小和AP粒度增加而减小,并对其燃烧性能的影响机制进行了简单分析。  相似文献   

5.
热塑性聚氨酯弹性体包覆CL-20及对NEPE推进剂性能影响   总被引:5,自引:1,他引:4  
采用热塑性聚氨酯弹性体,通过水-溶液悬浮法将其包覆于六硝基六氮杂异伍兹烷(CL-20),并对包覆后的CL-20分别进行了XPS、SEM、撞击感度和表面能测试;研究了弹性体包覆CL-20对含CL-20的NEPE推进剂常温力学性能、燃烧性能的影响.研究表明,热塑性弹性体能有效包覆CL-20,在大幅度提高含CL-20的NEPE推进剂常温力学性能并改善"脱湿"的同时,改善高能低特征信号配方燃烧性能,σm最大提高了47%,εm最大提高了184%;燃速压强指数n降低了12%.  相似文献   

6.
分析了AP含量、增塑荆含量、催化剂种类、含能粘合剂体系等对NEPE推进剂燃烧性能的影响,找出了提高其燃速压强指数的有效方法.同时,采用DSC、单幅摄影、燃烧波测试等方法,研究了ZH-2催化NEPE推进荆的机理.实验结果表明,NEPE推进剂燃速压强指数提高至0.67,同时在宽压强(1.5~30 MPa)范围内消除了压强指数拐点.  相似文献   

7.
固体推进剂含能催化剂研究进展   总被引:6,自引:0,他引:6  
对近年来固体推进剂含能催化剂的国内外研究状况进行综述,涉及NTO类、四唑类以及其他类型的含能催化剂,介绍了它们对固体推进剂燃烧和能量性能的影响.NTO类含能催化剂研究已取得重要进展,四唑类含能催化剂研究是当今研究的热点,其他类型含能催化剂的研究也已有所涉及,高能、环境友好、低特征信号的燃速催化剂仍是目前研究的重点,新型...  相似文献   

8.
膏体推进剂和固体推进剂药浆稳态燃烧研究   总被引:1,自引:1,他引:1  
在固体推进剂BDP燃烧模型基础上,引入膏体推进剂燃烧效应这一新参数将模型推广于膏体推进剂和固体推进剂药浆燃烧研究,模型考虑了氧化剂粒度分布,组分配比,催化剂性有和膏体推进剂燃烧热效应等对燃速的影响,以及药浆固化有前后燃速差别,还有靶线法测量了某批次复合推进剂药浆固化前后燃速变化,论文结果可用于膏体推进剂的配方和性能预测,以及利用药浆燃速预示固化后推进剂燃速,监控固体推进剂制造质量。  相似文献   

9.
利用水下声发射法测试静态燃速、线性回归法计算燃速压强指数,研究了GAP/CL-20高能固体推进剂中的固含量,固体组分AP/CL-20、CL-20/Al、Al/AP相对含量等配方组成因素对其燃烧性能的影响。结果表明,固含量在一定范围内升高,使燃速和燃速压强指数均升高;AP/CL-20中AP、CL-20/Al中CL-20含量的增加,均使燃速升高,而燃速压强指数下降;Al/AP中Al含量的增加,使推进剂的燃速下降,而燃速压强指数升高。最后,对GAP/CL-20高能固体推进剂燃速的主导机制进行了简单分析。  相似文献   

10.
降低NEPE推进剂燃速的途径探讨   总被引:4,自引:0,他引:4  
通过对NEPE推进剂燃烧表面的热平衡分析,指出了影响推进剂燃速的3个因素:“嘶嘶”区(fizz)的温度梯度、凝聚相反应热和燃面温度,提高了降低NEPE推进剂燃速的可能途径,研究了某些燃速降速剂的作用及其对推进剂能量的影响。用实验证明了降低燃速几个途径的可行性。  相似文献   

11.
含CL-20固体推进剂研究现状   总被引:1,自引:0,他引:1  
综述了含CL-20(六硝基六氮杂异伍兹烷)固体推进剂,包括改性双基推进剂、高能低特征信号推进剂、NEPE推进剂以及其他类型固体推进剂的研究现状;主要涉及引入CL-20后固体推进剂的热分解特性、能量特性、燃烧性能、力学性能及安全性能等方面的内容;最后,总结了目前CL-20及含CL-20固体推进剂在实际的工程化应用过程中依然存在的一些尚未解决的难题,并指出了CL-20及含CL-20固体推进剂今后的研究方向及重点。  相似文献   

12.
高能固体推进剂燃烧转爆轰的数值模拟   总被引:1,自引:0,他引:1  
利用一维两相反应流模型,建立了NEPE高能推进剂在颗粒床中燃烧转爆轰的控制方程和辅助方程,用M ac-Corm ack差分格式进行数值求解,并与实验值进行了比较。结果表明,数值预测与试验结果有较好的一致性,在DDT的各个阶段,颗粒床都存在不同程度的动态压缩,压缩波和燃烧波的相互作用是NEPE推进剂燃烧向爆轰转变的内在原因。  相似文献   

13.
固体推进剂燃烧波温度分布测定   总被引:1,自引:0,他引:1  
张杰 《固体火箭技术》2005,28(3):228-231
采用相对光强度法测定了双基推进剂、复合推进剂及NEPE(氧化剂为HNIW或HMX)推进剂的燃烧火焰温度分布。结果表明,用相对光强度法测得推进剂的最高燃烧火焰温度比热电偶法更接近推进剂的理论燃烧温度,测试压强越高,最高燃烧火焰温度与理论燃烧火焰温度的误差越小。  相似文献   

14.
基于环境压强下NEPE固体推进剂双剪强度准则   总被引:3,自引:0,他引:3  
基于双剪强度理论和已有的NEPE固体推进剂强度试验资料,提出了一个NEPE固体推进剂双剪强度准则的推广形式,探讨了该双剪强度准则相关参数的选取问题,验证了该双剪强度准则的合理性。研究表明,多轴应力状态下NEPE固体推进剂强度与应力相关,八面体剪应力随平均主应力的增加呈非线性增加;NEPE推进剂的破坏强度随拉伸速率的增加而提高。  相似文献   

15.
固体推进剂综合感度模糊评价法   总被引:1,自引:0,他引:1  
利用模糊数学方法,建立了固体推进剂综合感度评价的模糊数学模型,并用于NEPE推进剂的综合感度评价。应用结果表明,根据固体推进剂在不同生产工艺过程中各项感度值不同的特点,通过赋予不同的权重系数,消除了传统几何均值感度的片面性;无量纲化处理消除了各项感度之间量纲的不同;等级参数处理使固体推进剂综合感度值数字化,从而可以准确、直观地反应出固体推进剂的危险度。  相似文献   

16.
硝胺固体推进剂燃烧性能计算的神经网络方法   总被引:1,自引:0,他引:1  
传统的燃烧模型致力于对固体推进剂燃烧的物理化学过程的数学描述,其发展往往受到对推进剂燃烧机理认识程度的限制,本文利用误差反转(BP)神经网络建模的方法建立了硝胺固体推进剂燃烧性能及其影响因素(硝胺含量、压强、硝胺重均粒径)的定量关系,而不考虑燃烧的具体过程,根据此定量关系对硝胺固体推进剂燃烧性能的计算表明,计算结果和实验值吻合得较好,这为推进剂配方的计算机辅助设计提供了一种新方法。  相似文献   

17.
采用解析计算法,计算了NEPE高能复合固体推进剂的爆速和爆压。通过对冲击波超压进行计算,确定了超压与距离的关系,并与试验结果进行了对比。通过研究冲击波在空气中的衰减情况,确定出推进剂爆炸后的安全范围。研究结果表明,在无掩蔽的情况下,高能固体火箭发动机爆炸冲击波超压对人员有杀伤作用的距离为82 m,爆炸后人员的安全距离为120 m。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号