首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This review summarizes the observational achievements at radio and infrared wavelengths since 1984 concerning the circumstellar envelopes of evolved stars. The main emphasis is on our increased knowledge of late stellar evolution, in particular during the asymptotic giant branch phase and the transition to the planetary nebula stage, and on the properties of gas/dust envelopes formed by stellar mass loss. It is not a critical review, and it is essentially free from historical references.  相似文献   

2.
Observations have recently shown that supernovae are efficient dust factories, as predicted for a long time by theoretical models. The rapid evolution of their stellar progenitors combined with their efficiency in precipitating refractory elements from the gas phase into dust grains make supernovae the major potential suppliers of dust in the early Universe, where more conventional sources like Asymptotic Giant Branch (AGB) stars did not have time to evolve. However, dust yields inferred from observations of young supernovae or derived from models do not reflect the net amount of supernova-condensed dust able to be expelled from the remnants and reach the interstellar medium. The cavity where the dust is formed and initially resides is crossed by the high velocity reverse shock which is generated by the pressure of the circumstellar material shocked by the expanding supernova blast wave. Depending on grain composition and initial size, processing by the reverse shock may lead to substantial dust erosion and even complete destruction. The goal of this review is to present the state of the art about processing and survival of dust inside supernova remnants, in terms of theoretical modelling and comparison to observations.  相似文献   

3.
Small amounts of pre-solar “stardust” grains have survived in the matrices of primitive meteorites and interplanetary dust particles. These grains—formed directly in the outflows of or from the ejecta of stars—include thermally and chemically refractory carbon materials such as diamond, graphite and silicon carbide; as well as refractory oxides and nitrides. Pre-solar silicates, which have only recently been identified, are the most abundant type except for possibly diamond. The detailed study with modern analytical tools, of isotopic signatures in particular, provides highly accurate and detailed information with regard to stellar nucleosynthesis and grain formation in stellar atmospheres. Important stellar sources are Red Giant (RG) and Asymptotic Giant Branch (AGB) stars, with supernova contributions apparently small. The survival of those grains puts constraints on conditions they were exposed to in the interstellar medium and in the early solar system.  相似文献   

4.
In this review the IR emission from circumstellar material is discussed, both of ionized gas and dust grains, and the astrophysical information that can be extracted from such observations. Some emphasis is placed on the possibilities of stellar IR astronomy using a large space-borne telescope, especially with respect to the much better spatial and spectral resolution of such a telescope compared to the current generation of ground-based and space IR telescopes.  相似文献   

5.
A large fraction of ISO observing time was used to study the late stages of stellar evolution. Many molecular and solid state features, including crystalline silicates and the rotational lines of water vapour, were detected for the first time in the spectra of (post-)Asymptotic Giant Branch (AGB) stars. Their analysis has greatly improved our knowledge of stellar atmospheres and circumstellar environments. A surprising number of objects, particularly young planetary nebulae with Wolf-Rayet (WR) central stars, were found to exhibit emission features in their ISO spectra that are characteristic of both oxygen-rich and carbon-rich dust species, while far-IR observations of the PDR around NGC 7027 led to the first detections of the rotational line spectra of CH and CH+. Based on observations with ISO, an ESA project with instruments funded by ESA Member States (especially the PI countries: France, Germany, The Netherlands, and the United Kingdom), and with the participation of ISAS and NASA.  相似文献   

6.
P Cygni is a prototype for understanding mass loss from massive stars. This textbook star is known first of all because of two great eruptions in the 17th century. In the first half of this century it has given its name to a class of stars which are characterized by spectral lines consisting of nearly undisplaced emissions accompanied by a blue-displaced absorption component. This characteristic P Cygni-type profile betrays the presence of a stellar wind, but P Cygni's wind is quite unlike that of other hot supergiants. P Cygni was the first star that showed the effects of stellar evoluton from a study of its photometric history. It shares some common properties with the so-called Luminous Blue Variables. However, P Cygni is a unique object. This review deals with P Cygni's photometric properties, its circumstellar environment - including infrared and radio observations - and its optical and ultraviolet spectrum. Smaller sections deal with P Cygni's wind structure and evolution. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.
Recent spectroscopic results on stellar and solar abundances are reviewed with special reference to (a) Standard abundance distribution (Sun, hot stars, diffuse nebulae); (b) Abundance peculiarities related to stellar evolution (red giants showing results of H-burning and s-process, peculiar and metallic-lined stars); and (c) Population effects that may be related to the evolution of the Galaxy (correlation between stellar age and metal abundance, differences in details of heavyelement mixture in atmospheric composition of normal stars that have not reached an advanced evolutionary stage).  相似文献   

8.
After many years of permanence at minimum, the luminous blue variable AG Car started in mid 1990 a new brightening phase. We review the spectroscopic variations of the star since 1949, and discuss the nature of the circumstellar nebula. We give evidence that, like in Car, also in AG Car dust is continuously condensing from the stellar wind. We suggest that the star could be partially reddened by the circumstellar dust, which could affect the estimates of the stellar distance. An extended HII halo is present outside the ring nebula, which should be associated with the wind of a previous cooler evolutionary stage of AG Car.  相似文献   

9.
Studies of element abundances in stars are of fundamental interest for their impact in a wide astrophysical context, from our understanding of galactic chemistry and its evolution, to their effect on models of stellar interiors, to the influence of the composition of material in young stellar environments on the planet formation process. We review recent results of studies of abundance properties of X-ray emitting plasmas in stars, ranging from the corona of the Sun and other solar-like stars, to pre-main sequence low-mass stars, and to early-type stars. We discuss the status of our understanding of abundance patterns in stellar X-ray plasmas, and recent advances made possible by accurate diagnostics now accessible thanks to the high resolution X-ray spectroscopy with Chandra and XMM-Newton.  相似文献   

10.
This review summarises recent studies of O-stars, Luminous Blue Variables (LBVs) and Wolf-Rayet (WR) stars, emphasising observations and analyses of their atmospheres and stellar winds yielding determinations of their physical and chemical properties. Studies of these stellar groups provide important tests of both stellar wind theory and stellar evolution models incorporating mass-loss effects. Quantitative analyses of O-star spectra reveal enhanced helium abundances in Of and many luminous O-supergiants, together with CNO anomalies in OBN and Ofpe/WN9 stars, indicative of evolved objects. Enhanced helium, and CNO-cycle products are observed in several LBVs, implying a highly evolved status, whilst for the WR stars there is strong evidence for the exposition of CNO-cycle products in WN stars, and helium-burning products in WC and WO stars. The observed wind properties and mass-loss rates derived for O-stars show, in general terms, good agreement with predictions from the latest radiation-driven wind models, although some discrepancies are apparent. Several LBVs show similar mass-loss rates at maximum and minimum states, contrary to previous expectations, with the mechanism responsible for the variability and outbursts remaining unclear. WR stars exhibit the most extreme levels of mass-loss and stellar wind momenta. Whilst alternative mass-loss mechanisms have been proposed, recent calculations indicate that radiation pressure alone may be sufficient, given the strong ionization stratification present in their winds.  相似文献   

11.
The evolution of massive stars   总被引:1,自引:0,他引:1  
The evolution of stars with masses between 15 M 0 and 100M 0 is considered. Stars in this mass range lose a considerable fraction of their matter during their evolution.The treatment of convection, semi-convection and the influence of mass loss by stellar winds at different evolutionary phases are analysed as well as the adopted opacities.Evolutionary sequences computed by various groups are examined and compared with observations, and the advanced evolution of a 15M 0 and a 25M 0 star from zero-age main sequence (ZAMS) through iron collapse is discussed.The effect of centrifugal forces on stellar wind mass loss and the influence of rotation on evolutionary models is examined. As a consequence of the outflow of matter deeper layers show up and when the mass loss rates are large enough layers with changed composition, due to interior nuclear reactions, appear on the surface.The evolution of massive close binaries as well during the phase of mass loss by stellar wind as during the mass exchange and mass loss phase due to Roche lobe overflow is treated in detail, and the value of the parameters governing mass and angular momentum losses are discussed.The problem of the Wolf-Rayet stars, their origin and the possibilities of their production either as single stars or as massive binaries is examined.Finally, the origin of X-ray binaries is discussed and the scenario for the formation of these objects (starting from massive ZAMS close binaries, through Wolf-Rayet binaries leading to OB-stars with a compact companion after a supernova explosion) is reviewed and completed, including stellar wind mass loss.  相似文献   

12.
CO observations have shown that many lenticular and elliptical galaxies contain significant amounts of cool dense gas. This review summarizes the observational results related to the neutral gas phase and presents a systematic comparison with other interstellar and stellar data. The discovery of very dense molecular gas in the nuclear regions of early-type galaxies, the possible existence of a dust component neither seen optically nor in CO, internal inconsistencies of cooling flow scenarios, the origin of the cool gas, the presence of massive stars, aspects of galaxy evolution, and possibilities for future research are discussed in the light of the new data.  相似文献   

13.
The experimental basis of cosmic-ray astrophysics consists of detailed measurements of the cosmic-ray intensity arriving near earth, of observations of photons in all wavelength bands generated by cosmic ray interactions in the interstellar medium or in the cosmic-ray sources, and of laboratory studies of high energy particle interactions. In addition, a large body of astronomical information on the composition of stellar atmospheres and of the interstellar medium, including interstellar dust grains, is required to bring cosmic-ray data into context with subjects such as nucleosynthesis and evolution of the galaxy. This report will summarize some of these observational questions, will discuss specific experimental needs in current research, and will review some of the key measurements that can be expected for the near future. This review will neither be complete nor attempt to establish observational priorities. However, it will illustrate the variety of observational activities that are required to achieve progress.  相似文献   

14.
Massive stars are crucial building blocks of galaxies and the universe, as production sites of heavy elements and as stirring agents and energy providers through stellar winds and supernovae. The field of magnetic massive stars has seen tremendous progress in recent years. Different perspectives—ranging from direct field measurements over dynamo theory and stellar evolution to colliding winds and the stellar environment—fruitfully combine into a most interesting and still evolving overall picture, which we attempt to review here. Zeeman signatures leave no doubt that at least some O- and early B-type stars have a surface magnetic field. Indirect evidence, especially non-thermal radio emission from colliding winds, suggests many more. The emerging picture for massive stars shows similarities with results from intermediate mass stars, for which much more data are available. Observations are often compatible with a dipole or low order multi-pole field of about 1 kG (O-stars) or 300 G to 30?kG (Ap/Bp stars). Weak and unordered fields have been detected in the O-star ζ Ori A and in Vega, the first normal A-type star with a magnetic field. Theory offers essentially two explanations for the origin of the observed surface fields: fossil fields, particularly for strong and ordered fields, or different dynamo mechanisms, preferentially for less ordered fields. Numerical simulations yield the first concrete stable (fossil) field configuration, but give contradictory results as to whether dynamo action in the radiative envelope of massive main sequence stars is possible. Internal magnetic fields, which may not even show up at the stellar surface, affect stellar evolution as they lead to a more uniform rotation, with more slowly rotating cores and faster surface rotation. Surface metallicities may become enhanced, thus affecting the mass-loss rates.  相似文献   

15.
16.
Gamma-ray lines arise from radioactivities produced in nucleosynthesis sites, and from deexcitation of nuclei which have been activated through energetic particle collisions. Since the bulk of nucleosynthesis activity relates to activities inside massive stars, both these processes are related to the likely sources of cosmic rays: Supernova remnants show radioactivity afterglows at time scales which bracket their likely phases of relevance as CR acceleration sites; 26Al radioactivity may trace regions of intense wind interactions from groups of massive stars, and also encode information about the possible injection of matter into CR acceleration environments through interstellar dust grains. The status of -ray line measurements after the Compton Observatory mission is presented, with models and interpretations of current results, and the prospects of upcoming measurements.  相似文献   

17.
Planets form in circumstellar discs around young stars. Starting with sub-micron sized dust particles, giant planet formation is all about growing 14 orders of magnitude in size. It has become increasingly clear over the past decades that during all stages of giant planet formation, the building blocks are extremely mobile and can change their semimajor axis by substantial amounts. In this chapter, we aim to give a basic overview of the physical processes thought to govern giant planet formation and migration, and to highlight possible links to water delivery.  相似文献   

18.
The determination of the chemical composition of solid cometary dust particles was one of the prime objectives of the three missions to Comet Halley in 1986. The dust analysis was performed by time-of-flight mass-spectrometry. Within the experimental uncertainty the mean abundances of the rock-forming elements in cometary dust particles are comparable to their abundances in CI-chondrites and in the solar photosphere, i.e. they are cosmic. H, C, and N, on the other hand, in cometary dust are significantly more abundant than in CI-chondrites, approach solar abundances, are to some extent related to O, and reside in an omnipresent refractory organic component dubbed CHON. Element variations between individual dust grains are characterized by correlations of Mg, Si, and O, and to a lesser extent of Fe and S. From particle-to-particle variations of the rock forming elements information on the mineralogy of cometary dust can be obtained. Cluster analysis revealed certain groups that partly match the classifications of stratospheric interplanetary dust particles. About half of Halley's analyzed particles are characterized by anhydrous Fe-poor Mg-silicates, Fe-sulfides, and rarely Fe metal. The Fe-poor Mg-silicates link Halley's dust to that of Hale-Bopp as shown by recent IR observations. No significant deviation from normal of the isotopic composition of the elements is unequivocally present with the notable exception carbon: 12C-rich grains with 12C/13C-ratios up to ≈ 5,000 link cometary dust to presolar circumstellar grains identified in certain chondrites. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
In this paper we present the new chemical-spectro-photometric models of population synthesis by Bressan, Chiosi & Fagotto (1993). The models are specifically designed for elliptical galaxies. They include the presence of dark matter and galactic winds triggered by the energy deposit from supernovae and winds of massive stars. The models are aimed at studying the UV-excess and its dependence on the metallicity, the color-magnitude relation, and the color evolution as a function of the redshift. It is shown that in order to explain the color-magnitude relation as a result of galactic winds, the energy input from massive stars is required. Supernovae alone cannot provide sufficient energy to start galactic wind before the metallicity and hence colors have got saturated. We show that the main source of the UV-excess are the old, hot HB and AGB manque stars of high metallicity present in varying percentages in the stellar content of a galaxy. Since in our model the mean and maximum metallicity are ultimately driven by the mass of the galaxy, this provides a natural explanation for the observed correlation between UV-excess and metallicity. Finally, looking at the color evolution as function of the redshift, we suggest that a sudden change occurring in the color (1550-V) at the onset of the old, hot HB and AGB manque stars of high metallicity, is a good age indicator. The detection of this feature at a certain redshift would impose firm constraints on the underlying cosmological model of the universe.  相似文献   

20.
Waves and instabilities in dusty space plasmas   总被引:1,自引:0,他引:1  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号