首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 457 毫秒
1.
The metaphor of the unique and strictly bifurcating tree of life, suggested by Charles Darwin, needs to be replaced (or at least amended) to reflect and include processes that lead to the merging of and communication between independent lines of descent. Gene histories include and reflect processes such as gene transfer, symbioses and lineage fusion. No single molecule can serve as a proxy for the tree of life. Individual gene histories can be reconstructed from the growing molecular databases containing sequence and structural information. With some simplifications these gene histories can be represented by furcating trees; however, merging these gene histories into web-like organismal histories, including the transfer of metabolic pathways and cell biological innovations from now-extinct lineages, has yet to be accomplished. Because of these difficulties in interpreting the record retained in molecular sequences, correlations with biochemical fossils and with the geological record need to be interpreted with caution. Advances to detect and pinpoint transfer events promise to untangle at least a few of the intertwined histories of individual genes within organisms and trace them to the organismal ancestors. Furthermore, analysis of the shape of molecular phylogenetic trees may point towards organismal radiations that might reflect early mass extinction events that occurred on a planetary scale.  相似文献   

2.
The Earth is inhabited by life not just at its surface, but down to a depth of kms. Like surface life, this deep subsurface life produces a fossil record, traces of which may be found in the pore space of practically all rock types. The (palaeo)subsurface of other planetary bodies is therefore a promising target in the search for another example of life. Subsurface filamentous fabrics (SFFs), i.e. mineral encrustations of a filament-based textural framework, occur in many terrestrial rocks representing present or ancient subsurface settings. SFF are interpreted as mineral encrustations on masses of filaments/pseudofilaments of microbial origin. SFF are a common example of the fossil record of subsurface life. Macroscopic (pseudostalactites, U-shapes) and microscopic (filaments) characteristics make SFF’s a biosignature that can be identified with relative ease. SFF in the subsurface are probably about as common and easily recognizable as are stromatolites in surface environments. Close-up imagers (~50 micron/pixel resolution) and microscopes (~3 micron/pixel resolution) on upcoming Mars lander missions are crucial instruments that will allow the recognition of biofabrics of surface- and subsurface origin. The resolution available however will not allow the recognition of small (~1 micron) individual mineralized microbial cells. The microscopy of unprepared rock surfaces would benefit from the use of polarizing filters to reduce surface reflectance and enhance internally reflected light. Tests demonstrate the potential to visualize mineralized filaments using this procedure.  相似文献   

3.
Life, as we know it, is based on carbon chemistry operating in an aqueous environment. Living organisms process chemicals, make copies of themselves, are autonomous and evolve in concert with the environment. All these characteristics are driven by, and operate through, carbon chemistry. The carbon chemistry of living systems is an exact branch of science and we have detailed knowledge of the basic metabolic and reproductive machinery of living organisms. We can recognise the residual biochemicals long after life has expired and otherwise lost most life-defining features. Carbon chemistry provides a tool for identifying extant and extinct life on Earth and, potentially, throughout the Universe. In recognizing that certain distinctive compounds isolable from living systems had related fossil derivatives, organic geochemists coined the term biological marker compound or biomarker (e.g. Eglinton et al. in Science 145:263–264, 1964) to describe them. In this terminology, biomarkers are metabolites or biochemicals by which we can identify particular kinds of living organisms as well as the molecular fossil derivatives by which we identify defunct counterparts. The terms biomarker and molecular biosignature are synonymous. A defining characteristic of terrestrial life is its metabolic versatility and adaptability and it is reasonable to expect that this is universal. Different physiologies operate for carbon acquisition, the garnering of energy and the storage and processing of information. As well as having a range of metabolisms, organisms build biomass suited to specific physical environments, habitats and their ecological imperatives. This overall ‘metabolic diversity’ manifests itself in an enormous variety of accompanying product molecules (i.e. natural products). The whole field of organic chemistry grew from their study and now provides tools to link metabolism (i.e. physiology) to the occurrence of biomarkers specific to, and diagnostic for, particular kinds of metabolism. Another characteristic of living things, also likely to be pervasive, is that an enormous diversity of large molecules are built from a relatively small subset of universal precursors. These include the four bases of DNA, 20 amino acids of proteins and two kinds of lipid building blocks. Third, life exploits the specificity inherent in the spatial, that is, the three-dimensional qualities of organic chemicals (stereochemistry). These characteristics then lead to some readily identifiable and measurable generic attributes that would be diagnostic as biosignatures. Measurable attributes of molecular biosignatures include:
  1. Enantiomeric excess
  2. Diastereoisomeric preference
  3. Structural isomer preference
  4. Repeating constitutional sub-units or atomic ratios
  5. Systematic isotopic ordering at molecular and intramolecular levels
  6. Uneven distribution patterns or clusters (e.g. C-number, concentration, δ 13C) of structurally related compounds.
In this paper we address details of the chemical and biosynthetic basis for these features, which largely arise as a consequence of construction from small, recurring sub-units. We also address how these attributes might become altered during diagenesis and planetary processing. Finally, we discuss the instrumental techniques and further developments needed to detect them.  相似文献   

4.
The current approach to the study of the origin of life and to the search for life elsewhere is based on two assumptions. First, life is a purely physical phenomenon closely linked to specific environmental conditions. From this, we hypothesise that when these environmental conditions are met, life will arise and evolve. If these assumptions are valid, the search for life elsewhere should be a matter of mapping what we know about the range of environments in which life can exist, and then simply trying to find these environments elsewhere. Second, life can be clearly distinguished from the non-living world. While a single feature of a living organism left in the rock record is not always sufficient to determine unequivocally whether life was present, life often leaves multiple structural, mineralogical and chemical biomarkers that, in sum, support a conclusion that life was present. Our understanding of the habitats that can sustain or have sustained life has grown tremendously with the characterisation of extremophiles. In this chapter, we highlight the range of environments that are known to harbour life on Earth, describe the environments that existed during the period of time when life originated on Earth, and compare these habitats to the suitable environments that are found elsewhere in our solar system, where life could have arisen and evolved.  相似文献   

5.
Biosignatures in early terrestrial rocks are highly relevant in the search for traces of life on Mars because the early geological environments of the two planets were, in many respects, similar and, thus, the potential habitats for early life forms were similar. However, the identification and interpretation of biosignatures in ancient terrestrial rocks has proven contentious over the last few years. Recently, new investigations using very detailed field studies combined with highly sophisticated analytical techniques have begun to document a large range of biosignatures in Early Archaean rocks. Early life on Earth was diversified, widespread and relatively evolved, but its traces are generally, but not always, small and subtle. In this contribution I use a few examples of morphological biosignatures from the Early-Mid Archaean to demonstrate their variety in terms of size and type: macroscopic stromatolites from the 3.443 Ga Strelley Pool Chert, Pilbara; a meso-microscopic microbial mat from the 3.333 Ga Josefsdal Chert, Barberton; microscopic microbial colonies and a biofilm from the 3.446 Ga Kitty’s Gap Chert, Pilbara; and microscopic microbial corrosion pits in the glassy rinds of 3.22–3.48 Ga pillow lavas from Barberton. Some macroscopic and microscopic structures may be identifiable in an in situ robotic mission to Mars and in situ methods of organic molecule detection may be able to reveal organic traces of life. However, it is concluded that it will probably be necessary to return suitably chosen Martian rocks to Earth for the reliable identification of signs of life, since multiple observational and analytical methods will be necessary, especially if Martian life is significantly different from terrestrial life.  相似文献   

6.
Liquid water is essential for life as we know it, i.e. carbon-based life. Although other compound-solvent pairs that could exist in very specific physical environments could be envisaged, the elements essential to carbon and water-based life are among the most common in the universe. Carbon molecules and liquid water have physical and chemical properties that make them optimised compound-solvent pairs. Liquid water is essential for important prebiotic reactions. But equally important for the emergence of life is the contact of carbon molecules in liquid water with hot rocks and minerals. We here review the environmental conditions of the early Earth, as soon as it had liquid water at its surface and was habitable. Basing our approach to life as a “cosmic phenomenon” (de Duve 1995), i.e. a chemical continuum, we briefly address the various hypotheses for the origin of life, noting their relevance with respect to early environmental conditions. It appears that hydrothermal environments were important in this respect. We continue with the record of early life noting that, by 3.5 Ga, when the sedimentary environment started being well-preserved, anaerobic life forms had colonised all habitable microenvironments from the sea floor to exposed beach environments and, possibly, in the photic planktonic zone of the sea. Life on Earth had also evolved to the relatively sophisticated stage of anoxygenic photosynthesis. We conclude with an evaluation of the potential for habitability and colonisation of other planets and satellites in the Solar System, noting that the most common life forms in the Solar System and probably in the Universe would be similar to terrestrial chemotrophs whose carbon source is either reduced carbon or CO2 dissolved in water and whose energy would be sourced from oxidized carbon, H2, or other transition elements.  相似文献   

7.
During the solar journey through galactic space, variations in the physical properties of the surrounding interstellar medium (ISM) modify the heliosphere and modulate the flux of galactic cosmic rays (GCR) at the surface of the Earth, with consequences for the terrestrial record of cosmogenic radionuclides. One phenomenon that needs studying is the effect on cosmogenic isotope production of changing anomalous cosmic ray fluxes at Earth due to variable interstellar ionizations. The possible range of interstellar ram pressures and ionization levels in the low density solar environment generate dramatically different possible heliosphere configurations, with a wide range of particle fluxes of interstellar neutrals, their secondary products, and GCRs arriving at Earth. Simple models of the distribution and densities of ISM in the downwind direction give cloud transition timescales that can be directly compared with cosmogenic radionuclide geologic records. Both the interstellar data and cosmogenic radionuclide data are consistent with two cloud transitions, within the past 10,000 years and a second one 20,000–30,000 years ago, with large and assumption-dependent uncertainties. The geomagnetic timeline derived from cosmic ray fluxes at Earth may require adjustment to account for the disappearance of anomalous cosmic rays when the Sun is immersed in ionized gas.  相似文献   

8.
The solar wind and the solar XUV/EUV radiation constitute a permanent forcing of the upper atmosphere of the planets in our solar system, thereby affecting the habitability and chances for life to emerge on a planet. The forcing is essentially inversely proportional to the square of the distance to the Sun and, therefore, is most important for the innermost planets in our solar system—the Earth-like planets. The effect of these two forcing terms is to ionize, heat, chemically modify, and slowly erode the upper atmosphere throughout the lifetime of a planet. The closer to the Sun, the more efficient are these process. Atmospheric erosion is due to thermal and non-thermal escape. Gravity constitutes the major protection mechanism for thermal escape, while the non-thermal escape caused by the ionizing X-rays and EUV radiation and the solar wind require other means of protection. Ionospheric plasma energization and ion pickup represent two categories of non-thermal escape processes that may bring matter up to high velocities, well beyond escape velocity. These energization processes have now been studied by a number of plasma instruments orbiting Earth, Mars, and Venus for decades. Plasma measurement results therefore constitute the most useful empirical data basis for the subject under discussion. This does not imply that ionospheric plasma energization and ion pickup are the main processes for the atmospheric escape, but they remain processes that can be most easily tested against empirical data. Shielding the upper atmosphere of a planet against solar XUV, EUV, and solar wind forcing requires strong gravity and a strong intrinsic dipole magnetic field. For instance, the strong dipole magnetic field of the Earth provides a “magnetic umbrella”, fending of the solar wind at a distance of 10 Earth radii. Conversely, the lack of a strong intrinsic magnetic field at Mars and Venus means that the solar wind has more direct access to their topside atmosphere, the reason that Mars and Venus, planets lacking strong intrinsic magnetic fields, have so much less water than the Earth? Climatologic and atmospheric loss process over evolutionary timescales of planetary atmospheres can only be understood if one considers the fact that the radiation and plasma environment of the Sun has changed substantially with time. Standard stellar evolutionary models indicate that the Sun after its arrival at the Zero-Age Main Sequence (ZAMS) 4.5 Gyr ago had a total luminosity of ≈70% of the present Sun. This should have led to a much cooler Earth in the past, while geological and fossil evidence indicate otherwise. In addition, observations by various satellites and studies of solar proxies (Sun-like stars with different age) indicate that the young Sun was rotating more than 10 times its present rate and had correspondingly strong dynamo-driven high-energy emissions which resulted in strong X-ray and extreme ultraviolet (XUV) emissions, up to several 100 times stronger than the present Sun. Further, evidence of a much denser early solar wind and the mass loss rate of the young Sun can be determined from collision of ionized stellar winds of the solar proxies, with the partially ionized gas in the interstellar medium. Empirical correlations of stellar mass loss rates with X-ray surface flux values allows one to estimate the solar wind mass flux at earlier times, when the solar wind may have been more than 1000 times more massive. The main conclusions drawn on basis of the Sun-in-time-, and a time-dependent model of plasma energization/escape is that:
  1. Solar forcing is effective in removing volatiles, primarily water, from planets,
  2. planets orbiting close to the early Sun were subject to a heavy loss of water, the effect being most profound for Venus and Mars, and
  3. a persistent planetary magnetic field, like the Earth’s dipole field, provides a shield against solar wind scavenging.
  相似文献   

9.
Near-term missions may be able to access samples of organic material from Mars, Europa, and Enceladus. The challenge for astrobiology will be to determine if this material is the remains of dead microorganisms or merely abiotic organic material. The remains of life that shares a common origin with life on Earth will be straightforward to detect using sophisticated methods such as DNA amplification. These methods are extremely sensitive but specific to Earth-like life. Detecting the remains of alien life—that does not have a genetic or biochemical commonality with Earth life—will be much more difficult. There is a general property of life that can be used to determine if organic material is of biological origin. This general property is the repeated use of a few specific organic molecules for the construction of biopolymers. For example, Earth-like life uses 20 amino acids to construct proteins, 5 nucleotide bases to construct DNA and RNA, and a few sugars to construct polysaccharides. This selectivity will result in a statistically anomalous distribution of organic molecules distinct from organic material of non-biological origin. Such a distinctive pattern, different from the pattern of Earth-like life, will be persuasive evidence for a second genesis of life.  相似文献   

10.
This article is an interview with U.S. astronaut Norman Thagard. He was on the Russian Mir 18 mission. Launched to the space station from Baikonur on March 14, 1995, he returned to Earth on the Shuttle 115 days later. With the completion of that mission, Thagard holds the U.S. record for the most time spent in space. Topics of discussion during the interview include: the cultural isolation faced by an American astronaut on a Russian space facility; the physiological and psychological effects of long-duration space flight; the problems of loss of bone and the radiation environment; readaptation to gravity on Earth; and, recommendations to the designers of the Alpha station.  相似文献   

11.
As both Earth and Mars have had similar environmental conditions at least for some extended time early in their history (Jakosky and Phillips in Nature 412:237–244, 2001), the intriguing question arises whether life originated and evolved on Mars as it did on Earth (McKay and Stoker in Rev. Geophys. 27:189–214, 1989). Conceivably, early autotrophic life on Mars, like early life on Earth, used irreversible enzymatically enhanced metabolic processes that would have fractionated stable isotopes of the elements C, N, S, and Fe. Several important assumptions are made when such isotope fractionations are used as a biomarker. The purpose of this article is two-fold: (1) to discuss these assumptions for the case of carbon and to summarize new insights in abiologic reactions, and (2) to discuss the use of other stable isotope systems as a potential biomarker. It is concluded that isotopic biomarker studies on Mars will encounter several important obstacles. In the case of carbon isotopes, the most important obstacle is the absence of a contemporary abiologic carbon reservoir (such as carbonate deposits on Earth) to act as isotopic standard. The presence of a contemporary abiologic sulfate reservoir (evaporite deposits) suggests that sulfur isotopes can be used as a potential biomarker for sulfate-reducing bacteria. The best approach for tracing ancient life on Mars will be to combine several biomarker approaches; to search for complexity, and to combine small-scale isotopic variations with chemical, mineralogical, and morphological observations. An example of such a study can be a layer-specific correlation between δ 13C and δ 34S within an ancient Martian evaporite, which morphologically resembles the typical setting of a shallow marine microbial mat.  相似文献   

12.
A central purpose of Viking was to search for evidence that life exists on Mars or may have existed in the past. The missions carried three biology experiments the prime purpose of which was to seek for existing microbial life. In addition the results of a number of the other experiments have biological implications: (1) The elemental analyses of the atmosphere and the regolith showed or implied that the elements generally considered essential to terrestrial biology are present. (2) But unexpectedly, no organic compounds were detected in Martian samples by an instrument that easily detected organic materials in the most barren of terrestrial soils. (3) Liquid water is believed to be an absolute requisite for life. Viking obtained direct evidence for the presence of water vapor and water ice, and it obtained strong inferential evidence for the existence of large amounts of subsurface permafrost now and in the Martain past. However it obtained no evidence for the current existence of liquid water possessing the high chemical potential required for at least terrestrial life, a result that is consistent with the known pressure-temperature relations on the planet's surface. On the other hand, the mission did obtain strong indications from both atmospheric analyses and orbital photographs that large quantities of liquid water flowed episodically on the Martian surface 0.5 to 2.5 G years ago.The three biology experiments produced clear evidence of chemical reactivity in soil samples, but it is becoming increasingly clear that the chemical reactions were nonbiological in origin. The unexpected release of oxygen by soil moistened with water vapor in the Gas Exchange experiment together with the negative findings of the organic analysis experiment lead to the conclusion that the surface contains powerful oxidants. This conclusion is consistent with models of the atmosphere. The oxidants appear also to have been responsible for the decarboxylation of the organic nutrients that were introduced in the Label Release experiment. The major results of the GEX and LR experiments have been simulated at least qualitatively on Earth. The third, Pyrolytic Release, experiment obtained evidence for organic synthesis by soil samples. Although the mechanism of the synthesis is obscure, the thermal stability of the reaction makes a biological explanation most unlikely. Furthermore, the response of soil samples in all three experiments to the addition of water is not consistent with a biological interpretation.The conditions now known to exist at and below the Martian surface are such that no known terrestrial organism could grow and function. Although the evidence does not absolutely rule out the existence of favourable oases, it renders their existence extremely unlikely. The limiting conditions for the functioning of terrestrial organisms are not the limits for conceivable life elsewhere, and accordingly one cannot exclude the possibility that indigenous life forms may currently exist somewhere on Mars or may have existed sometime in the past. Nevertheless, the available information about the present Martian environment puts severe constraints and presents formidable challenges to any putative Martian organisms. The Martian environment in the past, on the other hand, appears to have been considerably less hostile biologically, and it might possibly have permitted the origin and transient establishment of a biota.  相似文献   

13.
Vesta and Ceres are the largest members of the asteroid belt, surviving from the earliest phases of Solar System history. They formed at a time when the asteroid belt was much more massive than it is today and were witness to its dramatic evolution, where planetary embryos were formed and lost, where the collisional environment shifted from accretional to destructive, and where the current size distribution of asteroids was sculpted by mutual collisions and most of the asteroids originally present were lost by dynamical processes. Since these early times, the environment of the asteroid belt has become relatively quiescent, though over the long history of the Solar System the surfaces of Vesta and Ceres continue to record and be influenced by impacts, most notably the south polar cratering event on Vesta. As a consequence of such impacts, Vesta has contributed a significant family of asteroids to the main belt, which is the likely source of the HED meteorites on Earth. No similar contribution to the main belt (or meteorites) is evident for Ceres. Through studies of craters, the surfaces of these asteroids will offer an opportunity for Dawn to probe the modern population of small asteroids in a size regime not directly observable from Earth.  相似文献   

14.
By extrapolating what we know on the origins of life on Earth, and in particular on the chemical processes which gave rise to the first living system, Europa and Titan appear as two major targets for studies of exo/astrobiology in the outer solar system. With the likely presence of water oceans relatively close to its surface, coupled to possible sources of organics, the emergence and sustaining of life on Europa seems possible. On Titan, it cannot be ruled out. But the main exobiological interest of the largest satellite of Saturn is the presence of a complex organic chemistry which shows many similarities with the prebiotic chemistry which allowed the emergence of life on Earth.  相似文献   

15.
The Sun is the most important energy source for the Earth. Since the incoming solar radiation is not equally distributed and peaks at low latitudes the climate system is continuously transporting energy towards the polar regions. Any variability in the Sun-Earth system may ultimately cause a climate change. There are two main variability components that are related to the Sun. The first is due to changes in the orbital parameters of the Earth induced by the other planets. Their gravitational perturbations induce changes with characteristic time scales in the eccentricity (~100,000 years), the obliquity (angle between the equator and the orbital plane) (~40,000 years) and the precession of the Earth’s axis (~20,000 years). The second component is due to variability within the Sun. A variety of observational proxies reflecting different aspects of solar activity show similar features regarding periodic variability, trends and periods of very low solar activity (so-called grand minima) which seem to be positively correlated with the total and the spectral solar irradiance. The length of these records ranges from 25 years (solar irradiance) to 400 years (sunspots). In order to establish a quantitative relationship between solar variability and solar forcing it is necessary to extend the records of solar variability much further back in time and to identify the physical processes linking solar activity and total and spectral solar irradiance. The first step, the extension of solar variability, can be achieved by using cosmogenic radionuclides such as 10Be in ice cores. After removing the effect of the changing geomagnetic field, a 9000-year long record of solar modulation was obtained. Comparison with paleoclimatic data provides strong evidence for a causal relationship between solar variability and climate change. It will be the subject of the next step to investigate the underlying physical processes that link solar variability with the total and spectral solar irradiance.  相似文献   

16.
We review electrical activity in blowing sand and dusty phenomena on Earth, Mars, the Moon, and asteroids. On Earth and Mars, blowing sand and dusty phenomena such as dust devils and dust storms are important geological processes and the primary sources of atmospheric dust. Large electric fields have been measured in terrestrial dusty phenomena and are predicted to occur on Mars. We review the charging mechanisms that produce these electric fields and discuss the implications of electrical activity to dust lifting and atmospheric chemistry. In addition, we review theoretical ideas about electric discharges on Mars. Finally, we discuss the evidence that electrostatics is responsible for dust transport on the Moon and asteroids.  相似文献   

17.
Besides Earth, Mars is the only planet with a record of resurfacing processes and environmental circumstances that indicate the past operation of a hydrologic cycle. However the present-day conditions on Mars are far apart of supporting liquid water on the surface. Although the large-scale morphology of the Martian channels and valleys show remarkable similarities with fluid-eroded features on Earth, there are major differences in their size, small-scale morphology, inner channel structure and source regions indicating that the erosion on Mars has its own characteristic genesis and evolution. The different landforms related to fluvial, glacial and periglacial activities, their relations with volcanism, and the chronology of water-related processes, are presented.  相似文献   

18.
Largest satellite of Saturn and the only in the solar system having a dense atmosphere, Titan is one of the key planetary bodies for astrobiological studies, due to several aspects. (i) Its analogies with planet Earth, in spite of much lower temperatures, with, in particular, a methane cycle on Titan analogous to the water cycle on Earth. (ii) The presence of an active organic chemistry, involving several of the key compounds of prebiotic chemistry. The recent data obtained from the Huygens instruments show that the complex organic matter in Titan’s low atmosphere is mainly concentrated in the aerosol particles. The formation of biologically interesting compounds may also occur in the deep water ocean, from the hydrolysis of complex organic material included in the chrondritic matter accreted during the formation of Titan. (iii) The possible emergence and persistence of Life on Titan. All ingredients which seem necessary for Life to appear and even develop – liquid water, organic matter and energy – are present on Titan. Consequently, it cannot be excluded that life may have emerged on or in Titan. In spite of the extreme conditions in this environment life may have been able to adapt and to persist. Many data are still expected from the Cassini-Huygens mission and future astrobiological exploration mission of Titan are now under consideration. Nevertheless, Titan already looks like another world, with an active organic chemistry, in the absence of permanent liquid water, on the surface: a natural laboratory for prebiotic-like chemistry.  相似文献   

19.
Comets are thought to preserve the most pristine material currently present in the solar system, as they are formed by agglomeration of dust particles in the solar nebula, far from the Sun, and their interiors have remained cold. By approaching the Sun, volatile components and dust particles are released forming the cometary coma. During the phase of Heavy Bombardment, 3.8--4 billion years ago, cometary matter was delivered to the Early Earth. Precise knowledge on the physico-chemical composition of comets is crucial to understand the formation of the Solar System, the evolution of Earth and particularly the starting conditions for the origin of life on Earth. Here, we report on the COSAC instrument, part of the ESA cometary mission Rosetta, which is designed to characterize, identify, and quantify volatile cometary compounds, including larger organic molecules, by in situ measurements of surface and subsurface cometary samples. The technical concept of a multi-column enantio-selective gas chromatograph (GC) coupled to a linear reflectron time-of-flight mass-spectrometer instrument is presented together with its realisation under the scientific guidance of the Max-Planck-Institute for Solar System Research in Katlenburg-Lindau, Germany. The instrument's technical data are given; first measurements making use of standard samples are presented. The cometary science community is looking forward to receive fascinating data from COSAC cometary in situ measurements in 2014.  相似文献   

20.
The early development of Mars is of enormous interest, not just in its own right, but also because it provides unique insights into the earliest history of the Earth, a planet whose origins have been all but obliterated. Mars is not as depleted in moderately volatile elements as are other terrestrial planets. Judging by the data for Martian meteorites it has Rb/Sr 0.07 and K/U 19,000, both of which are roughly twice as high as the values for the Earth. The mantle of Mars is also twice as rich in Fe as the mantle of the Earth, the Martian core being small (20% by mass). This is thought to be because conditions were more oxidizing during core formation. For the same reason a number of elements that are moderately siderophile on Earth such as P, Mn, Cr and W, are more lithophile on Mars. The very different apparent behavior of high field strength (HFS) elements in Martian magmas compared to terrestrial basalts and eucrites may be related to this higher phosphorus content. The highly siderophile element abundance patterns have been interpreted as reflecting strong partitioning during core formation in a magma ocean environment with little if any late veneer. Oxygen isotope data provide evidence for the relative proportions of chondritic components that were accreted to form Mars. However, the amount of volatile element depletion predicted from these models does not match that observed — Mars would be expected to be more depleted in volatiles than the Earth. The easiest way to reconcile these data is for the Earth to have lost a fraction of its moderately volatile elements during late accretionary events, such as giant impacts. This might also explain the non-chondritic Si/Mg ratio of the silicate portion of the Earth. The lower density of Mars is consistent with this interpretation, as are isotopic data. 87Rb-87Sr, 129I-129Xe, 146Sm-142Nd, 182Hf-182W, 187Re-187Os, 235U-207Pb and 238U-206Pb isotopic data for Martian meteorites all provide evidence that Mars accreted rapidly and at an early stage differentiated into atmosphere, mantle and core. Variations in heavy xenon isotopes have proved complicated to interpret in terms of 244Pu decay and timing because of fractionation thought to be caused by hydrodynamic escape. There are, as yet, no resolvable isotopic heterogeneities identified in Martian meteorites resulting from 92Nb decay to 92Zr, consistent with the paucity of perovskite in the martian interior and its probable absence from any Martian magma ocean. Similarly the longer-lived 176Lu-176Hf system also preserves little record of early differentiation. In contrast W isotope data, Ba/W and time-integrated Re/Os ratios of Martian meteorites provide powerful evidence that the mantle retains remarkably early heterogeneities that are vestiges of core metal segregation processes that occurred within the first 20 Myr of the Solar System. Despite this evidence for rapid accretion and differentiation, there is no evidence that Mars grew more quickly than the Earth at an equivalent size. Mars appears to have just stopped growing earlier because it did not undergo late stage (>20 Myr), impacts on the scale of the Moon-forming Giant Impact that affected the Earth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号