首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
重力对合金凝固过程与缺陷形成具有重要影响.在常规地面条件下难以清晰揭示凝固过程中的重力效应及其作用规律,而在微重力环境中重力对熔体的作用以及对凝固过程的影响大大降低.利用天宫二号空间实验并结合地面对比实验,研究AlCuMgZn单晶合金在微重力和重力环境下枝晶生长形貌和特征参数差异以及成分偏析和缺陷形成的异同,揭示重力对枝晶生长过程和成分偏析等现象的影响及其在凝固缺陷形成中的作用.  相似文献   

2.
采用VOF (Volume of Fluid)多相流模型, 通过用户自定义函数UDF (User Defined Function)实现相变过程中质量和能量的输运, 对微重力条件下尺寸为10mm × 10mm × 25mm的矩形通道的池沸腾现象进行数值模拟, 得到了微重力及常重力作用下单个气泡生长特性的差异. 模拟结果表明, 微重力条件下气泡周围的流线与温度场的分布有显著差异; 由于表面张力作用, 微重力下的气泡脱离特性与常重力下不同; 在微重力条件下, 气泡直径的变化比较复杂, 并与重力加速度的大小有关; Marangoni流对微重力下的流动影响很大, 使换热系数波动, 而且波动的幅度随重力加速度的减小而增大.   相似文献   

3.
比较研究了SJ-8返回式卫星留轨舱微重力条件与地面三维回转模拟微重力条件下青菜生长与发育情况.研究发现空间微重力条件下青菜开花过程需要大约18 h,明显长于地面对照5 h左右.回转器模拟实验结果表明,改变重力影响了花瓣的伸展与发育及花粉的产量,回转条件下花粉细胞中的微管排列明显不同于静止对照.细胞骨架受到干扰可能是改变重力条件下花粉产量降低的原因之一.本研究首次报道了在空间飞行试验中成功地采用了显微实时图像技术观察植物的开花过程,并获得了从花蕾到开花结束各阶段清晰的图像.   相似文献   

4.
用国产装置进行的空间蛋白质结晶实验   总被引:5,自引:0,他引:5  
使用国内研制的管式汽相扩散结晶装置,在我国返回式卫星上,成功地完成了两次空间蛋白质晶体生长实验,10种不同种类的蛋白质配制的48个样品在空间的出晶率分别达52%和80%,其中少数蛋白质生长出了较高质量的蛋白质晶体。结果表明,空间的微重力环境利于改善蛋白质晶体的生长,而且在结晶条件优化足够好的条件下,在空间里能生长出比地面晶体尺寸较大、形态较好和内部有序性较高的蛋白质晶体。本文还就微重力对蛋白质晶体生长的具体作用及其开发利用做了讨论。   相似文献   

5.
通过共混制备聚二甲基硅氧烷(PDMS)/羟基磷灰石(HAP)和PDMS/生物玻璃复合材料作为生长基板,研究了静止条件下不同基板上HAP的生长.设计了一套流速加载装置,观察模拟体液流速对生物玻璃基板上HAP晶体生长的影响.研究发现在静止条件下,HAP晶体在PDMS复合材料上比在生物玻璃上生长更快,尺寸更大;随着流速的增加,HAP晶体尺寸更大而且无定形沉淀数量减少.   相似文献   

6.
胶体材料箱是装载于实践十号上的重要载荷,用于空间胶体自组装的实验研究.地基实验阐明了常重力下的蒸发驱动胶体自组装机制.围绕胶体材料箱开展地基实验研究,制备了一种亲/疏水限位基片,分析了蒸发过程中受限液滴接触角的变化规律.通过同步显微观察法研究受限胶体液滴内部粒子的沉积行为,发现粒子沉积图案的形成过程由三种动力学行为控制.另外,通过落塔装置模拟短时微重力环境,分析重力瞬变引起限位基片上液滴的振荡过程,揭示了振荡过程中两个不同阶段的振荡特性.地基实验结果为在轨实验工况确定以及空间与地面实验对比提供了数据支撑,这对箱体工程参数设定以及空间实验条件匹配等具有重要意义.   相似文献   

7.
天宫二号碲化锌晶体生长   总被引:1,自引:1,他引:0       下载免费PDF全文
在天宫二号飞船综合材料实验炉六工位采用碲熔剂法生长了碲化锌晶体,生长时最高温度为800℃,以0.5mm·h-1的提拉速度向炉膛内部提拉生长晶体.飞行实验后,用相同实验参数在地面进行了对比实验.结果发现,空间样品尾部有一个非常大的橙色结晶区域(约10mm×6mm×2mm),而地面生长样品中碲化锌晶体尺寸仅为约3mm×3mm×1mm,空间生长的碲化锌晶粒尺寸明显优于地面.空间微重力环境下,由于毛细作用,空间样品的塞子处有Te和ZnTe的外延膜生成.而地面生长的锭条在塞子处只有零星点状气相生产物.因此微重力条件有利于碲化锌晶体材料的生长.   相似文献   

8.
航天之窗     
我国近几年多次运用卫星搭载空间晶体炉在微重力条件下获得用于卫星通讯、微波通讯的优质砷化镓单晶。我国的空间晶体炉,具有功耗低、效率高、炉膛温度高的特点,以很低的成本获得了世界第一块空间生长的砷化镓。科学家还利用空间晶体悬浮重熔生长炉,首次在空间生长出半绝缘体砷化镓单晶。最近搭载的空间大直径晶体功率移动生长炉获得了世界上首次公开报道  相似文献   

9.
利用国家微重力实验室落塔提供的短时微重力实验环境,对常重力和微重力条件下直接甲醇燃料电池(DMFC)内部的气液两相流动形态和相应电性能等的影响进行了实验研究,发现在微重力条件下,DMFC阳极流道内CO2气泡速度很小,气泡尺寸随着时间的推移而不断长大,甚至堵塞流道;流道堵塞现象随电流增大而急剧强化.电性能曲线显示,在浓差极化区存在显著的重力效应,电性能的恶化随浓差极化程度的加强而增大.   相似文献   

10.
基于空间微重力下植物的生物学效应及其微重力信号转导研究需要,在微重力条件下培养拟南芥,获得经微重力条件生长的拟南芥样品.在空间实验过程中实时采集、存储和传输植物样品的数字图像,并根据生物样品的生长周期对生物样品进行低温固定和储存,再由返回式卫星带回地面,开展微重力植物生物学效应研究.   相似文献   

11.
根据详细的燃料氧化机理和多环芳烃生成机理,对乙烯同轴射流火焰在重力变化下碳烟生成情况进行计算.认为碳烟的初始成核是由两个较大的多环芳烃(PAH)二聚而成,碳烟的表面生长机理为HACA,凝结过程主要考虑PAH与碳烟的碰撞吸附,碳烟生长和氧化过程耦合在分节气溶胶模型中.计算结果表明,微重力条件下乙烯同轴射流火焰峰值温度下降230K,碳烟浓度显著增加,且浓度峰值在微重力条件下更加偏离中心线.分析重力变化对碳烟前驱体乙炔和多环芳烃的分布、初始成核速率、表面生长速率及凝结速率的影响.结果表明碳烟在中心轴线上主要是通过凝结过程生成的,且微重力条件下PAH在碳烟表面的凝结更加重要.由于微重力条件下停留时间更长,导致碳烟直径更大.   相似文献   

12.
Parathyroid Hormone-related Protein (PTHrP) has been shown to be essential for the development and homeostatic regulation of lung and bone. Since both lung and bone structure and function are affected by microgravity, we hypothesized that 0 x g down-regulates PTHrP signaling. To test this hypothesis, we suspended lung and bone cells in the simulated microgravity environment of a Rotating Wall Vessel Bioreactor, which simulates microgravity, for up to 72 hours. During the first 8 hours of exposure to simulated 0 x g, PTHrP expression fell precipitously, decreasing by 80-90%; during the subsequent 64 hours, PTHrP expression remained at this newly established level of expression. PTHrP production decreased from 12 pg/ml/hour to 1 pg/ml/hour in culture medium from microgravity-exposed cells. The cells were then recultured at unit gravity for 24 hours, and PTHrP expression and production returned to normal levels. Based on these findings, we have obtained bones from rats flown in space for 2 weeks (Mission STS-58, SL-2). Analysis of PTHrP expression by femurs and tibias from these animals (n=5) revealed that PTHrP expression was 60% lower than in bones from control ground-based rats. Interestingly, there were no differences in PTHrP expression by parietal bone from space-exposed versus ground-based animals, indicating that the effect of weightlessness on PTHrP expression is due to the unweighting of weight-bearing bones. This finding is consistent with other studies of microgravity-induced osteoporosis. The loss of the PTHrP signaling mechanism may be corrected using chemical agents that up-regulate this pathway. In conclusion, PTHrP represents a stretch-sensitive paracrine signaling mechanism that may sense gravity.  相似文献   

13.
Stem growth of Prunus trees under simulated microgravity conditions was examined using a three-dimensional clinostat. The stems elongated with bending under such conditions. Stem elongation and leaf expansion were both promoted, whereas the formation of xylem in the secondary thickening growth was inhibited under the simulated microgravity condition. In secondary xylem, sedimentable amyloplasts were observed in the 1g control. The present results suggest that stem elongation and leaf expansion may be inhibited at 1g, while growth direction and secondary xylem formation depend on a gravity stimulus. A space experiment is expected to advance research on thickening growth in trees.  相似文献   

14.
The bone loss induced by microgravity is partly due to the decrease of mature osteoblasts. In the present study, we employed the random positioning machine (RPM) to simulate microgravity and investigated the acute effects of simulated microgravity on the differentiation of 2T3 preosteoblasts. Following 7 days’ culture under normal (1 g) condition, cells were exposed to simulated microgravity for 24 h. The results showed that 24 h treatment of simulated microgravity significantly decreased alkaline phosphatase (ALP) activity without changing the cell morphology. In addition, the mRNA expressions of osteogenic genes, including runt-related gene 2 (Runx2), osterix, osteocalcin (OC), type I collagen (Col I) and bone morphogenetic protein (BMP), were dramatically downregulated. Moreover, western blot analysis of total extracellular signal-regulated kinase (Erk) and phosphorylated Erk (p-Erk) indicated that p-Erk level, which represents the Erk activation status, was increased. Taken together, our results suggested that acute exposure to simulated microgravity inhibited osteoblast differentiation through modulating the expression of osteogenic genes and the Erk activity. These findings provide new insight for bone loss due to microgravity and unloading.  相似文献   

15.
Stem growth of Prunus trees under simulated microgravity conditions was examined using a three-dimensional clinostat. The stems elongated with bending under such conditions. Stem elongation and leaf expansion were both promoted, whereas the formation of xylem in the secondary thickening growth was inhibited under the simulated microgravity condition. In secondary xylem, sedimentable amyloplasts were observed in the 1g control. The present results suggest that stem elongation and leaf expansion may be inhibited at 1g, while growth direction and secondary xylem formation depend on a gravity stimulus. A space experiment is expected to advance research on thickening growth in trees.  相似文献   

16.
Growth of pea epicotyl in low magnetic field implication for space research   总被引:2,自引:0,他引:2  
A magnetic field is an inescapable environmental factor for plants on the earth. However, its impact on plant growth is not well understood. In order to survey how magnetic fields affect plant, Alaska pea seedlings were incubated under low magnetic field (LMF) and also in the normal geo-magnetic environment. Two-day-old etiolated seedlings were incubated in a magnetic shield box and in a control box. Sedimentation of amyloplasts was examined in the epicotyls of seedlings grown under these two conditions. The elongation of epicotyls was promoted by LMF. Elongation was most prominent in the middle part of the epicotyls. Cell elongation and increased osmotic pressure of cell sap were found in the epidermal cells exposed to LMF. When the gravitational environment was 1G, the epicotyls incubated under both LMF and normal geomagnetic field grew straight upward and amyloplasts sedimented similarly. However, under simulated microgravity (clinostat), epicotyl and cell elongation was promoted. Furthermore, the epicotyls bent and amyloplasts were dispersed in the cells in simulated microgravity. The dispersion of amyloplasts may relate to the posture control in epicotyl growth under simulated microgravity generated by 3D clinorotation, since it was not observed under LMF in 1G. Since enhanced elongation of cells was commonly seen both at LMF and in simulated microgravity, all elongation on the 3D-clinostat could result from pseudo-low magnetic field, as a by-product of clinorotation. (i.e., clinostat results could be based on randomization of magnetic field together with randomization of gravity vector.) Our results point to the possible use of space for studies in magnetic biology. With space experiments, the effects of dominant environmental factors, such as gravity on plants, could be neutralized or controlled for to reveal magnetic effects more clearly.  相似文献   

17.
微重力下相变储能单元融化过程数值模拟   总被引:2,自引:0,他引:2  
为探究微重力环境中,通过肋片强化了传热的相变储能单元中相变材料融化过程,通过数值模拟方法探究了微重力作用时相变材料融化过程中传热特性。通过地面实验与重力作用下数值模拟结果对比验证数值模拟方法的准确性,对比重力和微重力作用2种情况下数值模拟结果以揭示微重力环境中相变材料融化过程的特性。结果表明,当相变储能单元受微重力作用时,相变材料融化速率明显下降,热量主要通过热传导传递,融化的相变材料从顶端膨胀溢出向空间扩散,局部低温区域在相变储能单元中上部。   相似文献   

18.
Gravitropic curvature growth of Arabidopsis hypocotyls mainly occurred in the rapid growing Elongation Zone (EZI), not in the slow-growing Elongation Zone (EZⅡ). By examining reorientation of Microtubules (MT) and phenotype of the cell wall in the EZI and the EZⅡ of Arabidopsis hypocotyls under normal gravitational condition, it is found that MTs in the rapid growing epidermal cells were mainly in the transverse direction, while those in the non-growing epidermal cells were in the longitudinal directions. However, this difference in cortical MT arrays between the EZI and EZⅡ cells disappeared when the seedlings were exposed to the simulated microgravity condition on a horizontal clinostat. Field emission scanning electron microscopy revealed that the surface texture of epidermal cells, like the direction of the MT, in the EZI and the EZⅡ also became similar when exposed to the simulated microgravity condition. This result indicated that simulate microgravity could modify the potential differentiation between the EZI and the EZⅡ by affecting the orientation of cortical MT in the epidermal cells.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号