首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Conceptual study of Mars Aeroflyby Sample Collection (MASC) is conducted as a part of the next Mars exploration mission currently entertained in Japan Aerospace Exploration Agency. In the mission scenario, an atmospheric entry vehicle is flown into the Martian atmosphere, collects the Martian dust particles as well as atmospheric gases during the guided hypersonic flight, exits the Martian atmosphere, and is inserted into a parking orbit from which a return system departs for the earth to deliver the dust and gas samples. In order to accomplish a controlled flight and a successful orbit insertion, aeroassist orbit transfer technologies are introduced into the guidance and control system. System analysis is conducted to assess the feasibility and to make a conceptual design, finding that the MASC system is feasible at the minimum system mass of 600 kg approximately. The aerogel, which is one of the candidates for the dust sample collector, is assessed by arcjet heating tests to examine its behavior when exposed to high-temperature gases, as well as by particle impingement tests to evaluate its dust capturing capability.  相似文献   

2.
The Japan Aerospace Exploration Agency is currently developing the second asteroid sample return mission, designated as Hayabusa 2. Following the successful return of Hayabusa from the asteroid “Itokawa”, Hayabusa 2 is designed as a round-trip mission to the asteroid “1999 JU3”. The 1999 JU3 is a C-type asteroid, which is believed to contain organic matter and hydrated minerals. Thus, it is expected that successful sample collection will provide additional knowledge on the origin and evolution of the planets and, in particular, the origin of water and organic matter. The current mission scenario will enable the spacecraft to reach 1999 JU3 in the middle of 2018 and perform an asteroid proximity operation for 1.5 years. Three touch downs for sampling and one 2-m-class crater generation by means of a high-speed impact operation are planned during the asteroid proximity operation. The samples are to be brought back to the Earth by a re-entry capsule. The present paper describes the system design of Hayabusa 2, some key technical challenges of the mission, and the development status.  相似文献   

3.
Design of the Genesis spacecraft mission was derived from top-down flow of a basic and highly challenging science requirement: obtain samples of solar matter of such high quality and low background that they would sustain investigations of chemical and isotopic composition of the solar system for the coming decades, and well into the 21st Century. Within the framework of several dozen competing mission concepts for planetary exploration under NASA's Discovery program, Genesis needed to perform extremely high quality science (solar collection and sample return) for an affordable yet realistic level of effort. Key issues included preservation of collector cleanliness, avoidance of spacecraft-generated con-tamination, control of collector temperatures, simplicity of long-term operation, ability to efficiently reach the L1 operations point, reliability of avionics and other support systems, return to a specific landing locale on Earth, and provision for soft capture of the descent capsule via mid-air parachute snatch. Genesis is now in the final stages of spacecraft testing and system validation, the culmination of a highly interwoven effort to meet science objectives with innovative solutions that also satisfy engineering challenges for reliability, affordability, rapid development and a comprehensive test program. Genesis is scheduled for launch in February 2001.  相似文献   

4.
Among the major objectives of NASA's program of space exploration is a better understanding of the origin and evolution of the solar system. Crucial to this objective is the study of comets, which are thought to be the most primitive, pristine bodies remaining in the solar system. The importance of the study of comets has led NASA to plan a mission to rendezvous with comet Tempel 2 in 1997. Critical to the understanding of comets will be measurements of the nucleus material to determine its elemental and isotopic composition, its mechanical properties, and its thermal state and properties. This paper describes a proposal for a Comet Nucleus Penetrator to accomplish these measurement goals. The Comet Nucleus Penetrator will implant instruments into the comet's nucleus beneath a probable volatile-depleted surface mantle into material more representative of the bulk composition of the nucleus.  相似文献   

5.
驻波电帘除尘效率的实验研究   总被引:2,自引:1,他引:1  
月尘将对在月球表面进行巡视探测的设备产生严重不利影响。文章分析了利用驻波电帘对探测器的太阳电池板进行尘埃清除和防护,给出了电帘表面的电场分布,颗粒在电帘表面的受力状态和起跳、跃移过程,通过实验测量给出了电帘结构各参数对除尘效率的影响,制备了自清洁演示系统,对电帘的能耗进行了测定;表明驻波电帘是月表探测任务中尘埃防护的有效方法。  相似文献   

6.
针对太阳系边际探测任务,开展了星际多目标飞越的任务规划,采用小推力混合优化设计方法完成了基于借力飞行及电推进技术的行星际转移轨道联合优化设计,对比研究了面向日球层鼻尖和尾部探测的星际多目标探测飞行方案。研究表明,探测器在2024-2025年发射,可飞抵日球层鼻尖区域,在2027-2030年发射可飞抵日球层尾部区域,并可在2049年1月1日前飞离日心100 AU,实现太阳系边际空间的科学探测。其中日球层鼻尖探测任务探测器飞抵100 AU的位置位于鼻尖中心区域,可与旅行者1号、2号探测器形成有效互补。文章所用任务规划方法,可为太阳系边际探测的自主任务规划技术提供基础,相关研究成果能够为未来中国首次太阳系边际探测任务的实施提供有价值的参考。  相似文献   

7.
样品温度对原子氧环境下ITO/Kapton/Al涂层性能变化的影响   总被引:4,自引:4,他引:0  
文章利用原子氧环境地面模拟设备对航天器用材料ITO/Kapton/Al开展了原子氧环境试验研究。研究中选择的原子氧积分通量为9.1×1019 atoms/cm2,试验真空度为10-2 Pa量级,样品温度分别选取为25℃、70℃、100℃、120℃和150℃,研究样品温度对原子氧环境模拟试验可能造成的影响。试验后利用高精度微量电子天平对样品进行了质量损失测试并计算了材料的反应率,利用TEMP 2000A便携热发射率测试仪和LPSR 300便携光谱太阳吸收率测试仪分别对样品的发射率和太阳吸收比进行了测试。通过试验及分析发现:ITO膜对基底材料的保护较好,材料在试验后质量损失较少,原子氧反应率较低;样品温度的变化对ITO/Kapton/Al材料的质量损失影响较小,但对材料的热物理性质影响较大。  相似文献   

8.
电动帆是一种新兴的无推进剂损耗的推进方式,利用太阳风的动能冲力飞行。电动帆由数百根长而细的金属链所组成,这些金属链通过空间飞行器自旋展开,太阳能电子枪向外喷射电子,使金属链始终保持在高度的正电位,这些带电的金属链会排斥太阳风质子,利用太阳风的动能冲力推动空间飞行器驶向目标方向。针对电动帆轨迹优化问题,提出采用Gauss伪谱法进行轨迹优化,克服了间接法对协态变量初值敏感的缺点。考虑在太阳风暴等原因造成特征加速度改变的情况,基于Gauss伪谱法实现电动帆在线轨迹重新规划,提高电动帆对太阳风不确定性的适应能力。最后以太阳系外探测任务为例,对电动帆和太阳帆的性能进行对比,仿真结果表明电动帆在星际远航任务中所用时间较短。  相似文献   

9.
Historically, advocates of solar system exploration have disagreed over whether program goals could be entirely satisfied by robotic missions. Scientists tend to argue that robotic exploration is most cost-effective. However, the human space program has a great deal of support in the general public, thereby enabling the scientific element of exploration to be larger than it might be as a stand-alone activity. A comprehensive strategy of exploration needs a strong robotic component complementing and supporting human missions. Robots are needed for precursor missions, for crew support on planetary surfaces, and for probing dangerous environments. Robotic field assistants can provide mobility, access to scientific sites, data acquisition, visualization of the environment, precision operations, sample acquisition and analysis, and expertise to human explorers. As long as space exploration depends on public funds, space exploration must include an appropriate mix of human and robotic activity.  相似文献   

10.
The Suess-Urey (S-U) mission has been proposed as a NASA Discovery mission to return samples of matter from the Sun to the Earth for isotopic and chemical analyses in terrestrial laboratories to provide a major improvement in our knowledge of the average chemical and isotopic composition of the solar system. The S-U spacecraft and sample return capsule will be placed in a halo orbit around the L1 Sun-Earth libration point for two years to collect solar wind ions which implant into large passive collectors made of ultra-pure materials. Constant Spacecraft-Sun-Earth geometries enable simple spin stabilized attitude control, simple passive thermal control, and a fixed medium gain antenna. Low data requirements and the safety of a Sun-pointed spinner, result in extremely low mission operations costs.  相似文献   

11.
The current emphasis on smaller, faster, cheaper (SFC) spacecraft in NASA’s solar system exploration program is the product of a number of interacting – even interdependent – factors. The SFC concept as applied to NASA’s solar system exploration program can be viewed as the vector sum of (1) the space science community’s desire for more frequent planetary missions to plug the data gaps, educate the next generation of scientists, provide missions to targets of opportunity, and enable programmatic flexibility in times of budgetary crisis; (2) the poor publicity garnered by NASA in the early 1990s and the resultant atmosphere of public criticism (creating an opportunity for reform); (3) The Strategic Defense Initiative Organization’s and the National Space Council community’s desire to advance the Space Exploration Initiative and their perception that the NASA culture at the time represented a barrier to the effective pursuit of space exploration; (4) the effective leadership of NASA Administrator Daniel Goldin; and (5) the diminishing budget profile for space sciences in the early 1990s. This paper provides a summary of the origin of the smaller, faster, cheaper approach in the planetary program. A more through understanding of the history behind this policy will enable analysts to assess more accurately the relative successes and failures of NASA’s new approach to solar system exploration.  相似文献   

12.
The Mars Program Plan includes an integrated and coordinated set of future candidate missions and investigations that meet fundamental science objectives of NASA and the Mars Exploration Program (MEP). At the time this paper was written, these possible future missions are planned in a manner consistent with a projected budget profile for the Mars Program in the next decade (2007-2016). As with all future missions, the funding profile depends on a number of factors that include the exact cost of each mission as well as potential changes to the overall NASA budget. In the current version of the Mars Program Plan, the Astrobiology Field Laboratory (AFL) exists as a candidate project to determine whether there were (or are) habitable zones and life, and how the development of these zones may be related to the overall evolution of the planet. The AFL concept is a surface exploration mission equipped with a major in situ laboratory capable of making significant advancements toward the Mars Program's life-related scientific goals and the overarching Vision for Space Exploration. We have developed several concepts for the AFL that fit within known budget and engineering constraints projected for the 2016 and 2018 Mars mission launch opportunities. The AFL mission architecture proposed here assumes maximum heritage from the 2009 Mars Science Laboratory (MSL). Candidate payload elements for this concept were identified from a set of recommendations put forth by the Astrobiology Field Laboratory Science Steering Group (AFL SSG) in 2004, for the express purpose of identifying overall rover mass and power requirements for such a mission. The conceptual payload includes a Precision Sample Handling and Processing System that would replace and augment the functionality and capabilities provided by the Sample Acquisition Sample Processing and Handling system that is currently part of the 2009 MSL platform.  相似文献   

13.
魏乙  邓子辰  李庆军  张凯 《宇航学报》2016,37(9):1041-1048
利用绝对节点坐标方法研究绳系空间太阳能电站在轨飞行的太阳能电池板动力响应。通过勒让德变换引入广义动量,在约束哈密尔顿体系下建立轨道、姿态和弹性振动耦合的动力学方程。基于祖冲之类方法的思想,结合辛龙格-库塔方法对微分-代数方程进行数值求解。数值算例说明本文建模方法和数值算法都是有效的,能很好地保持系统约束和能量。最后分析了绳长、平台系统的质量、轨道高度对于梁中点挠度和轴向平均应变的影响。  相似文献   

14.
Small satellite's role in future hyperspectral Earth observation missions   总被引:1,自引:0,他引:1  
M. Guelman  F. Ortenberg   《Acta Astronautica》2009,64(11-12):1252-1263
Along with various advanced satellite onboard sensors, an important place in the near future will belong to hyperspectral instruments, considered as suitable for different scientific, commercial and military missions. As was demonstrated over the last decade, hyperspectral Earth observations can be provided by small satellites at considerably lower costs and shorter timescales, even though with some limitations on resolution, spectral response, and data rate. In this work the requirements on small satellites with imaging hyperspectral sensors are studied. Physical and technological limitations of hyperspectral imagers are considered. A mathematical model of a small satellite with a hyperspectral imaging spectrometer system is developed. The ability of the small satellites of different subclasses (micro- and mini-) to obtain hyperspectral images with a given resolution and quality is examined. As a result of the feasibility analysis, the constraints on the main technical parameters of hyperspectral instruments suitable for application onboard the small satellites are outlined. Comparison of the data for designed and planned instruments with simulation results validates the presented approach to the estimation of the small satellite size limitations. Presented analysis was carried out for sensors with conventional filled aperture optics.  相似文献   

15.
An overall bi-directional panoramic solar system exploration activity, not just looking at the solar system at a macro level and helping to build a simulation model for the solar system, but the probe will also be able to explore the Milky Way and the vast universe from a much wider perspective. By observing the characteristics of the solar system, solar wind, ionization envelope and other parameters from a bi-directional panorama on both sides of the solar ecliptic plane, it will assist the scientific community and human kind to understand the solar system in a more extensive, deeper and systematic way than before.The exploration can be done in two steps. The first step is to launch a solar polar probe. Secondly to launch a bi-directional probe orbiting the galaxy in sync with the sun.  相似文献   

16.
17.
The mass estimation of small bodies in the solar system—such as comets or minor planets—with an accuracy sufficient to get scientific information is difficult. The ground-based range-rate measurements are not practicable for bodies smaller than 100 km diameter.A proof mass, ejected from the spacecraft before the flyby and whose relative trajectory is determined with onboard measurements can give very good results even for small bodies. This paper presents the expected accuracy of mass determination depending on ballistic conditions (relative velocity and closest approach), type and accuracy of measurements (range, optical).  相似文献   

18.
This paper presents the results of a mission concept study for an autonomous micro-scale surface lander also referred to as PANIC – the Pico Autonomous Near-Earth Asteroid In Situ Characterizer. The lander is based on the shape of a regular tetrahedron with an edge length of 35 cm, has a total mass of approximately 12 kg and utilizes hopping as a locomotion mechanism in microgravity. PANIC houses four scientific instruments in its proposed baseline configuration which enable the in situ characterization of an asteroid. It is carried by an interplanetary probe to its target and released to the surface after rendezvous. Detailed estimates of all critical subsystem parameters were derived to demonstrate the feasibility of this concept. The study illustrates that a small, simple landing element is a viable alternative to complex traditional lander concepts, adding a significant science return to any near-Earth asteroid (NEA) mission while meeting tight mass budget constraints.  相似文献   

19.
火星是人类深空探测的重要目标之一。利用火星上的大气、水等资源原位制备液氧、甲烷等推进剂,不仅为火星探测器返回地球、开展长周期火星探测等提供能源,也为人类建立火星生命保障系统提供必要的物质基础。分析了火星推进剂原位制备的重要性,对推进剂原位制备的资源、技术方案进行了对比分析,并重点叙述了CO_2捕集、水资源获取等方面的研究进展,以期为该领域相关研究提供参考。  相似文献   

20.
An efficient scheme of the use of the Earth’s gravity in interplanetary flights is suggested, which opens up new opportunities for exploration of the solar system. The scheme of the gravitational maneuver allows one to considerably reduce the spacecraft mass consumption for a flight and the time of flight. An algorithm of the gravitational maneuver is suggested that takes into account the restriction on the altitude of a planet flyby. Estimates are made of transport capabilities for delivery of a spacecraft to the orbits of Jupiter, Saturn, and Uranus. The spacecraft is based on a middle-class carrier launcher of the Soyuz type and includes chemical and electric plasma jet engines of the SPD-140 type, which use solar energy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号