首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Discharge characteristics of a non-wall-loss Hall thruster were studied under different channel lengths using a design based on pushing a magnetic field through a double permanent magnet ring. The effect of different magnetic field intensities and channel lengths on ionization, efficiency, and plume divergence angle were studied. The experimental results show that propellant utilization is improved for optimal matching between the magnetic field and channel length. While matching the magnetic field and channel length, the ionization position of the neutral gas changes. The ion flow is effectively controlled, allowing the thrust force, specific impulse, and efficiency to be improved. Our study shows that the channel length is an important design parameter to consider for improving the performance of non-wall-loss Hall thrusters.  相似文献   

3.
    
The Earth's ionosphere and especially its equatorial part is a highly dynamical medium. Geostationary satellites are known to be a powerful tool for ionospheric studies. Recent developments in BDS-GEO satellites allow such studies on the new level due to the best noise pattern in TEC estimations, which corresponds to those of GPS/GLONASS systems. Here we used BDS-GEO satellites to demonstrate their capability for studying equatorial ionosphere variability on different time scales. Analyzing data from the equatorial SIN1 IGS station we present seasonal variations in geostationary slant TEC for the periods of high (October 2013 - October 2014) and low (January 2017 - January 2018) solar activity, which show semi-annual periodicity with amplitudes about 10 TECU during solar maximum and about 5 TECU during the solar minimum. The 27-day variations are also prominent in geostationary slant TEC variations, which correlates quite well with the variations in solar extreme UV radiation. We found semi-annual pattern in small scale ionospheric disturbances evaluated based on geostationary ROTI index: maximal values correspond to spring and fall equinoxes and minimum values correspond to summer and winter solstices. The seasonal asymmetry in ROTI values was observed: spring equinox values were almost twice as higher than fall equinox ones. We also present results on the 2017 May 28–29 G3 geomagnetic storm, when ~30 TECU positive anomaly was recorded, minor and final major sudden stratospheric warmings in February and March 2016, with positive daytime TEC anomalies up to 15–20 TECU, as well as the 2017 September 6 X9.3 solar flare with 2 TECU/min TEC rate. Our results show the large potential of geostationary TEC estimations with BDS-GEO signals for continuous monitoring of space weather effects in low-latitude and equatorial ionosphere.  相似文献   

4.
    
Future efforts towards Mars exploration should include a discussion about the effects that the strict application of Planetary Protection policies is having on the astrobiological exploration of Mars, which is resulting in a continued delay in the search for Martian life. As proactive steps in the path forward, here we propose advances in three areas. First, we suggest that a redefinition of Planetary Protection and Special Regions is required for the case of Mars. Particularly, we propose a definition for special places on Mars that we can get to in the next 10–20?years with rovers and landers, where try to address questions regarding whether there is present-day near-surface life on Mars or not, and crucially doing so before the arrival of manned missions. We propose to call those special places “Astrobiology Priority Exploration” regions (APEX regions). Second, we stress the need for the development of robotic tools for the characterization of complex organic compounds as unequivocal signs of life, and particularly new generations of complex organic chemistry and biosignature detection instruments, including advances in DNA sequencing. And third, we advocate for a change from the present generation of SUV-sized landers and rovers to new robotic assets that are much easier to decontaminate such as microlanders: they would be very small with limited sensing capabilities, but there would be many of them available for launch and coordination from an orbiting platform. Implementing these changes will help to move forward with an exploration approach that is much less risky to the potential Mars biosphere, while also being much more scientifically rigorous about the exploration of the “life on Mars” question – a question that needs to be answered both for astrobiological discovery and for learning more definitive lessons on Planetary Protection.  相似文献   

5.
Hourly systematic measurements of the highest frequency reflected by the sporadic-E layer (foEs) recorded from January 1976 to June 2009 at the ionospheric stations of Rome (Italy, 41.8°N, 12.5°E) and Gibilmanna (Italy, 37.9°N, 14.0°E) were considered to carry out a comparative study between the sporadic E layer (Es) over Rome and Gibilmanna. Different statistical analysis were performed taking into account foEs observations near the periods of minimum and maximum solar activity. The results reveal that: (1) independently from the solar activity, Es develops concurrently over extended regions in space, instead of being a spatially limited layer which is transported horizontally by neutral winds over a larger area; especially during summer months, when an Es layer is present at Rome, there is a high probability that an Es layer is also present over Gibilmanna, and vice versa; (2) Es layer lifetimes of 1–5 h were found; in particular, Es layers with lifetimes of 5 h both over Gibilmanna and Rome are observed with highest percentages of occurrence in summer ranging between 80% and 90%, independently from the solar activity; (3) latitudinal effects on Es layer occurrence emerge mostly for low solar activity during winter, equinoctial, and summer months, when Es layers are detected more frequently over Gibilmanna rather than Rome; (4) when the presence of an Es layer over Rome and Gibilmanna is not simultaneous, Es layer appearance both over Rome and Gibilmanna confirms to be a locally confined event, because drifting phenomena from Rome to Gibilmanna or vice versa have not been emphasized.  相似文献   

6.
The digital ionosonde located in Bhopal (23.2°N, 77.2°E), India has been used to investigate the responses of the Es layer in the equatorial ionization anomaly (EIA) crest to the total solar eclipse (TSE) of July 22, 2009. Results show the presence of intense Es layer during and after the eclipse period. The gravity waves induced by the solar eclipse propagated upward in the Es layer and produced the periodic disturbance. The results of the wavelet analysis display the presence of dominant oscillation of about 24–32, 16–20 and 8 min. The appearance of intense sporadic-E concomitantly with the signatures of gravity wave suggests that the wind shear introduced by the solar eclipse induced gravity wave might be the plausible mechanism behind the intensification of Es-layer ionization.  相似文献   

7.
This paper reports the diurnal, seasonal, and long term variability of the E layer critical frequency (foE) and peak height (hmE) derived from Digisonde measurements from 2009 to 2016 at the low-middle latitude European station of Nicosia, Cyprus (geographical coordinates: 35°N, 33°E, geomagnetic lat. 29.38°N, I = 51.7°). Manually scaled monthly median values of foE and hmE are compared with IRI-2012 predictions with a view to assess the predictability of IRI. Results show that in general, IRI slightly overestimates foE values both at low and high solar activity. At low solar activity, overestimations are mostly limited to 0.25?MHz (equivalent electron density, 0.775?×?103?el/m?3) but can go as high as 0.5?MHz (equivalent electron density, 3.1?×?103?el/m?3, during noon) around equinox. In some months, underestimations, though sporadic in nature, up to 0.25?MHz are noted (mostly during sunrise and sunset). At high solar activity, a similar pattern of over-/underestimation is evident. During the entire period of study, over-/under estimations are mostly limited to 0.25?MHz. In very few cases, these exceed 0.25?MHz but are limited to 0.5?MHz. Analysis of hmE reveals that: (1) hmE remains almost constant during ±2 to ±4?h around local noon, (2) hmE values are higher in winter than in spring, summer and autumn, (3) there are two maxima near sunrise and sunset with a noontime minimum in between. During the entire period of study, significant differences between observed hmE and the IRI predictions have been noted. IRI fails to predict hmE and outputs a constant value of 110?km, which is higher than most of the observed values. Over- and under estimations range from 3 to 13?km and from 0 to 3?km respectively.  相似文献   

8.
Hourly systematic measurements of the highest frequency reflected by the sporadic-E layer (foEs) recorded at the Rome ionospheric observatory (Italy, 41.8° N, 12.5° E), were considered during the period January 1976–December 2007, to calculate the percentage of occurrence of sporadic-E layer with frequencies foEs greater than a given threshold value fT, P(foEs > fT).  相似文献   

9.
10.
11.
利用中国科学院空间科学与应用研究中心海南电离层观测站DPS-4电离层测高仪2002年3月至2005年2月的观测数据,对太阳活动下降期间海南地区上空发生的偶发E层(Es)的逐年变化和季节变化进行了统计分析.主要结果表明,在这3年中海南地区Es事件出现次数逐年增加;Esr,Esq出现最频繁,其次是Esr,而Esc和Esf出现次数较少,出现次数最少的是Esh;Es事件在夏季出现最为频繁,秋季和冬季次之,春季最为稀少;各季节不同类型Es事件的出现率也不同,其中Esl和Esq一般在各季节占主导地位,Esr其次,Esc,Esf和Esh出现次数较少,尤其是Esf在秋季几乎没有出现.这些结果对于进一步研究Es产生的物理机制提供了探测基础,同时对于电离层空间天气预报模型的建立也具有重要的意义.   相似文献   

12.
13.
    
During 2008, the solar activity is extremely low. The satellite observations show that the ionospheric height and electron density is much lower than the predictions by the international reference ionosphere (IRI) model. In this paper, we compared the slant total electron content (TEC) observed by the COSMIC satellites during 2008 with the IRI model results. It is found that the IRI model with IRI2001 and IRI2001 Cor. topside options will always overestimate the electron density in both lower and higher altitudes. But the rest two topside options (NeQuick, and TTS) tend to overestimate the electron density in the F layer and underestimate it in the topside altitudes. The switch altitude between overestimation and underestimation and the latitude-local time distribution of the model deviation depend on the topside option. The current investigation might be useful for the model improvement as well as data assimilation work based on the IRI model and the LEO TEC data.  相似文献   

14.
    
Using the Global Navigation Satellite System (GNSS) radio occultation observations from Formosa Satellite mission-3/Constellation Observing System for Meteorology, Ionosphere, and Climate (FORMOSAT-3/COSMIC) from 2007 to 2012, the climatological characteristics of the global tropopause was studied, with the following features identified. The overall results generally agree with previous studies. The tropopause has an obvious zonal structure, with more zonal characteristics in the Southern Hemisphere than the Northern Hemisphere. The vertical shape of the tropopause is sharp in the tropics and broad in the sub-tropical latitudes, with the sharpest latitudinal gradient in the mid-latitudes of both hemispheres. The global tropopause exists in a large range between 8 km and 17 km (or between 100 hPa and 340 hPa). The highest tropopause is over the South Asian monsoon regions for the entire year. The spatial structure of the tropopause in the polar region is of concentric structure, with an altitude between 7.5 km and 10 km. It is more symmetric in the Antarctic than the Arctic. Differing from other places, the height of the tropopause in the Antarctic is higher in winter as opposed to summer. The tropopause has distinct seasonal variability, especially in polar regions.  相似文献   

15.
    
With a network of ground-based ionosondes distributed around the world, the ionospheric peak electron density and its height measured by FORMOSAT-3/COSMIC satellites in terms of GPS radio occultation technique are extensively examined in this article. It is found that, in spite of the latitude, the mean values of the peak electron density measured by COSMIC satellites are systematically smaller than those observed by ground-based ionosondes. The discrepancy between them is dependent on the latitude, namely, it is small in low and mid-latitudes and large in high-latitude region. Moreover, statistical analysis shows that the slopes of the regression line that is best fitted to the scatter diagram of occultation-retrieved peak electron density (ordinate axis) versus ionosonde-observed peak density (abscissa axis) are universally less than one. This feature is believed to be the result of path average effect of non-uniform distribution of the electron density along the GSP ray during the occultation. A comparison between COSMIC-measured peak height and ionosonde-derived peak height hmF2 indicates that the former is systematically higher than the latter. The difference in the two can be as large as 20% or more in equatorial and low-latitude regions. This result implies that the peak height hmF2 derived from the virtual height through true height analysis based on Titheridge method seems to underestimate the true peak height. The correlation between COSMIC and ionosonde peak electron densities is analyzed and the result reveals that correlation coefficient seems to be dependent on the fluctuation of the occultation-retrieved electron density profile. The correlation will be higher (lower) for the electron density profiles with smaller (larger) fluctuations. This feature suggests that the inhomogeneous distribution of the electron density along the GPS ray path during the occultation plays an important role affecting the correlation between COSMIC and ionosonde measurements.  相似文献   

16.
基于卫星导航系统精密星历和NeQuick模型模拟COSMIC星座电离层掩星事件的几何过程和物理数据, 并采用改正TEC法和“洋葱分层”算法反演电离层三维电子密度. 模拟反演得到的电子密度廓线与模型变化趋势一致, 偏差较小. 电离层hmF2, NmF2的绝对误差分别为4.2 km和0.26×104 cm–3, 相对误差分别为1.66%和4.95%, 反演值与模型值的线性回归决定系数R2分别为0.956和0.950, 表明掩星反演模拟完整可靠、正确有效. 在几何模拟正确的基础上, 分析了COSMIC-2完全组网时的掩星观测性能及多系统GNSS对掩星数量及空间分布特征的影响. 为提高未来掩星事件的时效性及时空分布的均匀性, 提出了一种掩星分布均匀性指数, 并且通过非支配排序遗传算法实现掩星星座卫星总数、轨道面数、轨道倾角的最优确定.  相似文献   

17.
This study aims to validate the electron density profiles from the FORMOSAT-3/COSMIC satellites with data from Digisondes in Brazil during the low solar activity period of the years 2006, 2007 and 2008. Data from three Brazilian Digisondes located in Cachoeira Paulista (22.7°S, 45°W), São Luís (2.5°S, 44.2°W) and Fortaleza (3.8°S, 38°W) were used in the comparisons. Only the profiles whose density peak have been obtained near the stations coordinates were chosen for the comparison. Although there is generally good agreement, some cases of discrepancies are observed. Some of these discrepancies cannot be explained simply by the differences in the position and local time of the measurements made by the satellite and the ground-based station. In such cases it is possible that local conditions, such as the presence of a trans-equatorial wind or electron density gradients, could contribute to the observed differences. Comparison of the F2 layer peak parameters, the NmF2 and hmF2, obtained from the two techniques showed that, in general, the agreement for NmF2 is pretty good and the NmF2 has a better correlation than hmF2. Cachoeira Paulista had the worst correlation for hmF2 possibly because this station is situated in the region under the influence of the equatorial ionization anomaly, a region where it is more difficult to apply the RO technique without violating the spherical symmetry condition.  相似文献   

18.
利用COSMIC掩星数据监测电离层的异常变化   总被引:1,自引:0,他引:1       下载免费PDF全文
分析了COSMIC掩星数据反演电子密度的方法,利用实例研究反演方法的特点,并采用ISR非相干散射雷达获取的电子密度数据进行验证,进而反演了长三角区域SHAO(IGS)站上空在日全食和太阳风暴期间的电子密度廓线图. 通过与平静日期间电离层电子密度进行比较,发现日全食及太阳风暴导致电离层发生的异常变化,从而提出COSMIC掩星数据反演电子密度在监测电离层变化时所具有的优势.  相似文献   

19.
    
In this paper we compared the ionospheric peak parameters (peak electron density of the F region, NmF2, and peak height of the F region, hmF2) retrieved from the FORMASAT-3/COSMIC (COSMIC for short) satellite measurement with those from ionosonde observation at Sanya (18.3°N, 109.6°E) during the period of 2008–2013. Although COSMIC NmF2 (hmF2) tends to be lower (higher) than ionosonde NmF2 (hmF2), the results show that the ionospheric peak parameters retrieved from COSMIC measurement generally agree well with ionosonde observation. For NmF2 the correlation between the COSMIC measurement and the ionosonde observation is higher than 0.89, and for hmF2 the correlation is higher than 0.80. The correlation of the ionospheric peak parameters decreases when solar activity increases. The performance of COSMIC measurement is acceptable under geomagnetic disturbed condition. The correlation of NmF2 between COSMIC and ionosonde measurements is higher (lower) during the nighttime (daytime), while the correlation of hmF2 is lower (higher) during the nighttime (daytime).  相似文献   

20.
In this paper, we compared the F2-Layer critical frequency (foF2) derived from FORMOSAT-3/COSMIC radio occultation (RO) and ionosondes at Chiang Mai, Chumphon and Kototabang during the years 2008–2015 to evaluate the performance of COSMIC RO over Southeast Asia region. The results show that the time development of foF2 values derived from COSMIC RO generally agrees well with those from ionosonde measurements. However, the differences between the foF2 derived from COSMIC RO and that derived from ionosonde observations display latitudinal dependence. COSMIC RO tends to underestimate foF2 at Chiang Mai and Kototabang, which is near to the north EIA crest and the south one, respectively, while a little overestimate foF2 at Chumphon, which is close to the geomagnetic equator. COSMIC RO agrees best with ionosonde at Chumphon and worst at Chiang Mai. At each ionosonde station, the quality of COSMIC RO data degrades with the increase of solar activity. In addition, at the station Chiang Mai and Kototabang, COSMIC RO performs better in summer than in equinox and winter. Furthermore, the differences in foF2 derived from COSMIC RO and that from ionosonde measurements vary with local time, i.e., the differences in foF2 are generally smaller at night and larger in noontime when equatorial ionization anomaly (EIA) is well developed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号