首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
暗物质寻踪顾名思义,暗物质就是看不见的物质。广义的暗物质包括不发可见光的行星、白矮星、黑洞等天体。这里所说的暗物质,是指除各种天体、星际气体、宇宙尘埃以外的,可能广泛地分布在宇宙空间的细小粒子。何以见得存在这种暗物质?我们知道,太阳系的质量98.68%集中在太阳身上,即集中在太阳系的中心。因此,水星、金星等离太阳近的行星,受到太阳的引力比海王星、冥王星等离太阳远的行星更强,它们必须以更高的速度绕太阳运行,以克服更强的引力。可是,我们在银河系和河外星系中却看不到这种现象,尽管星系中心集中了更多的恒星,还有巨大的黑洞,…  相似文献   

2.
外星文明不是从来就有的,它跟地球文明一样,经历了从无到有、从低级阶段到高级阶段的过程.作为外星人乘具的飞碟,它在外星文明中也不是从来就有的,它是外星文明发展到一定阶段的产物.飞碟来源于它所在的文明,又集中体现了它所在文明的发展程度.外星人通过飞碟实现了宇宙飞行,同时将他们的文明延伸到星际之间,这样的文明可以称为星际文明.以飞碟为标志工具的星际文明,远远超越了现阶段的地球文明,它的出现使地球文明的光环黯然失色.  相似文献   

3.
本文基于太阳高能电子和日冕区开放场及行星际磁场特征,建立了相对论电子束与伴有空间变化(空间周期变化)的轴向场相互作用模型,用数值方法研究了该体系产生的电磁不稳定性,结果指出只有当太阳高能电子束速度和空间振荡场波数大到一定程度时,该体系才可激发在旋电磁模不稳定性,当太阳高能电子束逐一通过日冕和行星际空间时,激发具有波频向低频漂移特征的电磁波.  相似文献   

4.
宇宙探索     
γ射线望远镜简介γ射线在光谱的X射线之外,波长小于0.01纳米,最短波长没有极限,已探测到的最短波长为10亿亿分之一纳米。γ射线具有极高的能量,没有任何一颗恒星和星际气体的温度高到能发射γ射线。只有高速旋转的黑洞、脉冲星和类星体辐射γ射线,高速运行的宇宙射线撞击星际气体的原子时也辐射γ射线,中子星、黑洞碰撞时则可发生γ射线爆发。它们构成γ射线宇宙,需要用γ射线望远镜进行探测。γ射线能穿透宇宙中的物质而跨越数十亿光年的空间,但却不能穿过地球大气层到达地面。不过γ射线撞击大气层的气体原子时会发出闪光、因而在地面上…  相似文献   

5.
陈丹 《太空探索》1998,(1):26-29
我们肉眼所见的满天星斗皆属于银河系,它由上千亿个各种天体组成,其主要成员是包括太阳在内的恒星,此外还有星团、星云、星际气体和尘埃等。  相似文献   

6.
陈丹 《太空探索》1998,(3):23-26
由几十亿至几千亿恒星和星际物质构成的庞大天体系统,称为星系。在银河系里有着包括太阳在内的各种“长相”和各种“打扮”的天体,它们都是银河系的居民,而银河系就像太空中的一个居民点。 在茫茫的宇宙空间,散布着无法计数的居民点,它们都是与银河系相似规模的恒星系统,由于它们都在银河系之外,故称河外星系,或干脆就简称为星系。通过望远镜观测,人们发现这些宇宙空间居民点有着各式各样的形状,其中有的是  相似文献   

7.
太阳系是一个庞大的天体系统,主要包括围绕着太阳旋转的九大行星、五十多颗围绕着不同行星运转的卫星、数以万计的小行星、彗星、流星体以及行星际气体和尘埃物质.  相似文献   

8.
正射电望远镜是寻找地外文明最常用也是最有效的工具。目前,选取特定频率、监听星际射电信号是利用射电望远镜寻找地外文明最常见的方式。另外,也有主动向太空中发射信号,为其他文明发现我们提供线索的努力。被动聆听就如同我们和别人打电话时,要先弄清楚对方的电话号码一样,搜寻地外文明的努力同样需要在宽阔的无线电频谱中找到一个合适的监听频  相似文献   

9.
《太空探索》2003,(11):21-21
与汽车和飞机都靠发动机的推力前进一样,神舟飞船在太空中运行也是靠发动机推动的。所不同的是汽车和飞机上的发动机是依靠油料与空气中的氧气混合燃烧,产生气体推力,因此,它们都离不开空气中的氧气。而飞船上的发动机是液体火箭发动机,在没有氧气的太空中飞行,因此,飞船发动机在工作时不需要空气中的氧气,是由一种称作氧化剂的含氧液体提供燃料燃烧所需的氧,或者直接由燃料催化分解产生气体,燃烧气体和分解气体通过喷管喷出产生推力,使飞船能够在没有空气的太空中也能飞行。  相似文献   

10.
正太阳系诞生(46亿年前)46亿年前的银河系是不同于今天的,它是由5条旋转臂组成。在银河系的5条旋转臂的一条臂上,宇宙云中的星际气体和尘埃渐渐开始收缩,形成质量较大物质。又过了5000万年至1亿年后,这些收缩的星云就诞生出了太阳。围绕太阳轨道的颗粒发  相似文献   

11.
拒绝孤独     
1999年第1期《飞碟探索》刊载了一篇题为《太空孤旅》的文章,该文从宇宙空间的遥远距离和人类目前的技术手段出发,否定了星际旅行和找到地外文明的可能性。这一结论显然忽视了人类科学技术和理论水平的发展,是宇宙探索中的不可知论。诚然,宇宙空间是巨大的,而且认识中的宇宙越来越大。今天,人类可以探测的宇宙半径已达160亿光年。地球、太阳系,甚至直径达10万光年的银河系,也只不过是沧海一粟。在这茫茫沧海、亿万星河中,某个地方或者很多地方,也许正在孕育着与我们类似的,或者远远超过我们的智慧生命。与他们取得联系…  相似文献   

12.
<正>就像古代的水手一样,星际"冒险家"有朝一日也许会在星际扬"帆"远航,但是星际"水手"利用的不是海上的风而是太阳光。太阳帆利用太阳的光压在太空航行,为人类提供一种新的技术方案。"光帆"2任务成功2019年7月31日,美国行星学会宣布其6月25日由猎鹰重型火箭从肯尼迪航天中心发射的"光帆"2小卫星已成功验证了利用太阳帆来改变轨道的能力。这颗三体立方星在其  相似文献   

13.
几种材料的磁层亚暴环模试验   总被引:1,自引:0,他引:1  
<正> 一、引言星际空间存在运动着的带电粒子。当太阳风粒子到达地球磁层顶且随着太阳风粒子而来的星际磁场,指向地磁南极时,太阳风中的感应电流产生的附加场使地磁场发生畸变。迎着太阳的一面较为扁平,而背着太阳的一面形成一个很长的磁尾。在磁尾区,太阳风粒子的注入(它们的能量为几十电子伏到几千电子伏)引起了高能粒子的大量增加。这些高能粒子在  相似文献   

14.
采用Williams—Mead磁场模式,考虑当行星际磁场存在南向分量时的磁层扰动情况,计算了一组同步卫星所在位置太阳质子截止刚度随地方时的变化。计算结果表明,当考虑行星际磁场存在5γ南向分量时,截止刚度值显著降低。午夜西方截止刚度极小值由原来的3.1兆电子伏降至1.9兆电子伏,中午西方截止刚度极大值由原来的22.1兆电子伏降至16.6兆电子伏。与同步高度太阳质子的观测结果更加接近。  相似文献   

15.
行星际磁场北向时磁层顶区磁场重联的全球模式   总被引:2,自引:0,他引:2  
在对背阳面磁层顶区局域磁场重联模拟的基础上提出了一个行星际磁场北向时磁层顶磁场重联的全球模式。行星际磁场北向时碰层顶磁场重联导致近地尾瓣的能量被输送到远磁尾,太阳风能量不在磁尾储存,向阳面磁层顶变厚,磁层受到一系列扰动。   相似文献   

16.
航天简讯     
尤里塞斯卫星打破远航纪录欧空局的尤里塞斯行星际探测卫星,自1990年6月9日发射至今,已过去了三年,在其3年的飞行中,其“足迹”穿过太阳系,遍布辽阔无垠的太空。它是至今人类制造的第一颗到达太阳赤道上空32度极纬度的人造卫星,并已打破了由美国旅行者-1飞行器创造的远航纪录。尤里塞斯卫星曾于1992年2月贴近木星飞过,这个大行星的引力跳板(tremplingravitationnel)作用给尤里塞斯卫星以第二次加速度把它推向太阳,因此使之能飞过  相似文献   

17.
<正>NASA网站2017年4月24日报道,利用卡西尼(Cassini)探测器、两艘旅行者(Voyager)号飞船、恒星际边界探索者(IBEX)的观测数据,发现日球层(heliosphere)的形状可能为更规则的球形,而非之前普遍认为的长尾彗星形,相关论文发表在Nature Astronomy上。日球层包括太阳和受到太阳风影响的区域。当来自太阳的带电粒子到达日球层边界时,这些带电粒子有时会与星际介质(ISM)中的中性原子发生  相似文献   

18.
正当宇宙的温度"逐渐"降低时,希格斯场也会像开水中的气泡一样发生变化。这些气泡会逐渐变大,最后吞并所有宇宙空间。在《三体Ⅲ·死神永生》中,太阳系最后被毁灭,因为"神"一样的文明知道了太阳系的坐标,给太阳系送来一个美丽的礼物——一种透明的,可以随意进入任何物体包括人体的二维薄片。它被刘慈欣冠以一个诗意的名字:二向箔。我们回顾一下书中对二向箔的描写:  相似文献   

19.
行星际高密度结构的磁场位形   总被引:1,自引:0,他引:1  
本文统计分析了第20太阳周行星际高密度结构的磁场位形。结果说明当出现高密度结构时行星际磁场相对于黄道面的倾角约增大10°。这种增大并非流相互作用或电流片倾斜和折皱所引起的,而可能是非恒稳太阳风流所具有的磁场位形。当出现高速流或扇形边界时,由于高密度结构后平行于Parker螺旋线的分量增大,磁场在黄逋面内对螺旋线的偏离角减小。   相似文献   

20.
利用射电望远镜。科学家早已发现星际空间存在着无机分子和有机分子。在恒星之间分布着的星际物质(如星际气体、星际尘埃和各种各样的星际云等)中,也存在着生命所必需的元素和物质,如氢、碳、氧、磷、铁和水等等。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号