首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Planetary scale waves in the equatorial upper mesosphere were studied by measuring the airglow OI557.7 nm, O2b(0,1) and OH(6,2) emission intensities and OH rotational temperature at São João do Cariri (7.4°S; 36.5°W). From four years of data, 1998–2001, periodic oscillations of the airglow emissions were analyzed using the Lomb–Scargle spectral analysis. An oscillation of 3–4 days was frequently observed, which might be ultra-fast Kelvin waves. No seasonal dependency of the wave activity was found. On some occasions we found a quasi-5-day oscillation with a phase difference between the emissions, suggesting an upward energy flow. This is interpreted as a normal mode Rossby wave.  相似文献   

2.
Simultaneous observations of the airglow OH(6,2) band rotational temperature, TOH, and meteor trail ambipolar diffusion coefficient, D, were carried out at Shigaraki (35°N, 136°E), during PSMOS 2003 Campaign, January 28 to February 8, 2003. The OH emission height was estimated by cross correlation analysis of the TOH and D nocturnal variations. A good correlation between TOH and D was obtained at 85 km of altitude. From the nocturnal variations of TOH and D, it is found that the OH emission peak height varied from 88 km before the midnight to 84 km in the early morning. The height variation could be caused by an atmospheric tidal effect in the emission height.  相似文献   

3.
Upper atmospheric CO above 24 km has been observed over Poker Flat (147°W, 65°N, altitude 0.61 km), Alaska using ground-based solar absorption infrared spectroscopy. This is the first reported detection of stratospheric–mesospheric CO using this method from the ground. The results clearly indicate that there is a seasonal variation of the CO profile with enhanced abundances in spring while remaining low from May onwards.The Poker Flat Research Range is one of the many measurement sites that constitute the Network for the Detection of Stratospheric Change (NDSC). The method used in this work, estimating the CO partial column abundances above the middle stratosphere, can be applied to spectra observed using FTIR spectrometry at many other NDSC sites. This suggests the availability of this established technique as a new method for CO measurements in the upper atmosphere.  相似文献   

4.
Mars Global Reference Atmospheric Model (Mars-GRAM 2001) is an engineering-level Mars atmosphere model widely used for many Mars mission applications. From 0 to 80 km, it is based on NASA Ames Mars General Circulation Model (MGCM), while above 80 km it is based on University of Michigan Mars Thermospheric General Circulation Model. Mars-GRAM 2001 and MGCM use surface topography from Mars Global Surveyor Mars Orbiter Laser Altimeter (MOLA). Validation studies are described comparing Mars-GRAM with a global summary data set of Mars Global Surveyor Thermal Emission Spectrometer (TES) data. TES averages and standard deviations were assembled from binned TES data which covered surface to ∼40 km, over more than a full Mars year (February 1999–June 2001, just before start of a Mars global dust storm). TES data were binned in 10° × 10° latitude–longitude bins (36 longitude bins, centered at 5°–355°, by 18 latitude bins, centered at −85° to +85°), and 12 seasonal bins (based on 30° increments of Ls angle). Bin averages and standard deviations were assembled at 23 data levels (temperature at 21 pressure levels, plus surface temperature and surface pressure). Two time-of-day bins were used: local time near 2 or 14 h. Two dust optical depth bins were used: infrared optical depth, either less than or greater than 0.25 (which corresponds to visible optical depth less than or greater than about 0.5). For interests in aerocapture and precision entry and landing, comparisons focused on atmospheric density. TES densities versus height were computed from TES temperature versus pressure, using assumptions of perfect gas law and hydrostatics. Mars-GRAM validation studies used density ratio (TES/Mars-GRAM) evaluated at data bin center points in space and time. Observed average TES/Mars-GRAM density ratios were generally 1 ± 0.05, except at high altitudes (15–30 km, depending on season) and high latitudes (>45°N), or at most altitudes in the southern hemisphere at Ls  90° and 180°. Compared to TES averages for a given latitude and season, TES data had average density standard deviation about the mean of ∼2.5% for all data, or ∼1–4%, depending on time of day and dust optical depth. Average standard deviation of TES/Mars-GRAM density ratio was 8.9% for local time 2 h and 7.1% for local time 14 h. Thus standard deviation of observed TES/Mars-GRAM density ratio, evaluated at matching positions and times, is about three times the standard deviation of TES data about the TES mean value at a given position and season.  相似文献   

5.
We summarize two years of Mesosphere Lower Thermosphere Photometer (MLTP) operation of mesospheric OH and O2 emission monitoring. The deduced mesospheric OH and O2 temperatures show large variability. Nightly temperature variations over Gadanki (13.5°N, 79.2°E) are dominated by the short period wave features, while tidal amplitudes are relatively small. Our measurements are the first to report a long period seasonal variation at two upper mesospheric altitudes simultaneously over the Indian sector. Our observations reveal the presence of a dominant semi-annual oscillation (∼6 months periodicity) together with a shorter period (∼2.5  months periodicity) oscillation in both OH and O2 data.  相似文献   

6.
An all-sky CCD imager capable of measuring wave structure in the airglow OH, O2 and OI (557.7 nm) emissions was operated in the equatorial region at São João do Cariri (Cariri), Brazil (7°S, 36°W), in collaboration with the Instituto Nacional de Pesquisas Espaciais (INPE). Occurrence of mesospheric bore events was studied using the data from September 2000 to September 2002. Sixty-four bore events were detected during the observation period. Most of the bores showed the complementary effects suggested by Dewan and Picard [E.M. Dewan, R.H. Picard, Mesospheric bores. Journal of Geophysical Research 103, 6295–6305, 1998], except in a few cases where the relative variations were inconsistent with this model.  相似文献   

7.
Mesospheric temperature trends can be derived from LF phase-height observations in mid-latitudes supported by ionospheric absorption and ionosonde observations. Analysing the full observation period from 1959 until 2003, a mean yearly temperature trend has been derived with −0.25 K/yr for the height interval from 48 to 82 km. Subdividing the whole observation interval in two parts before and after 1979, the trend is markedly stronger in the second period with −0.38 K/yr compared with −0.20 K/yr in the first part before 1979. These differences can at least partly be explained by a steeper CO2 increase and ozone decrease in the second interval. The differences in the mesospheric temperature trends are most evidently expressed during winter months and are markedly smaller during summer season. The reason of this seasonal difference is not quite clear; it may be related with detected ozone trends which are clearly stronger during winter months on both hemispheres.  相似文献   

8.
Winds from a meteor radar at Wuhan (30.6°N, 114.5°E) and a MF radar at Adelaide (35°S, 138°E) are used to study the 16-day waves in the mesosphere and lower thermosphere (MLT). The height range is 78–98 km at Wuhan and 70–98 km at Adelaide. By comparison, it is found that the zonal components at both sites are generally larger than the meridional ones, and eastward motion of the zonal background winds is favorable for the 16-day waves penetration to the MLT region. The zonal maximum amplitude appears in the autumn (September–October) around 86–98 km at Wuhan and in the winter months and early spring (July–October) around 72–82 km at Adelaide. Differences are found in wave amplitudes and time of appearance between the two years of 2002 and 2003. In 2003, the intensity of the wave amplitudes is relatively smaller than that for 2002 at both sites. The summer 16-day waves are comparatively weaker at Adelaide in both years, but stronger in 2002 at Wuhan near the mesopause and the lower thermosphere (86–98 km). The strong summer waves at Wuhan may come from the winter southern hemisphere.  相似文献   

9.
The large V/m electric fields inherent in the lower mesosphere play an essential role in lower ionospheric electrodynamics. They must be the cause of large variations in the electron temperature and the electron collision frequency and consequently of the transition of the ionospheric plasma in the lower part of the D region into a nonisothermal state. This study is based on the datasets on large mesospheric electric fields collected with the 2.2-MHz radar of the Institute of Space and Atmospheric Studies, University of Saskatchewan, Canada (52°N geographic latitude, 60.4°N geomagnetic latitude), and with the 2.3-MHz radar of the Kharkiv V. Karazin National University, Ukraine (49.6°N geographic latitude, 45.6°N geomagnetic latitude). The statistical analysis of these data is presented by [Meek, C.E., Manson, A.H., Martynenko, S.I., Rozumenko, V.T., Tyrnov, O.F. Remote sensing of mesospheric electric fields using MF radars. J. Atmos. Solar-Terr. Phys. 66, 881–890, 2004. 10.1016/j.jastp.2004.02.002]. The large mesospheric electric fields in the 60–67-km altitude range are experimentally established to follow a Rayleigh distribution in the 0 < E < 2.5 V/m interval. These data have permitted the resulting differential distributions of relative disturbances in the electron temperature, θ, and the effective electron collision frequency, η, to be determined. The most probable θ and η values are found to be in the 1.4–2.2 interval, and hence the nonstationary state of the lower part of the D region needs to be accounted for in studying processes coupling the electrically active mesosphere and the lower ionospheric plasma.  相似文献   

10.
We continue monitoring supernova remnant (SNR) 1987A with the Chandra X-ray Observatory. As of 2004 January, bright X-ray spots in the northwest and the southwest are now evident in addition to the bright eastern ring. The overall X-ray spectrum, since 2002 December, can be described by a planar shock with an electron temperature of ∼2.1 keV. The soft X-ray flux is now 8 × 10−13 ergs cm−2 s−1, which is about five times higher than four years ago. This flux increase rate is consistent with our prediction based on an exponential density distribution along the radius of the SNR between the HII region and the inner ring. We still have no direct evidence of a central point source, and place an upper limit of LX = 1.3 × 1034 ergs s−1 on the 3–10 keV band X-ray luminosity.  相似文献   

11.
Individual giant radio pulses (GRPs) from the Crab pulsar last only a few microseconds. However, during that time they rank among the brightest objects in the radio sky reaching peak flux densities of up to 1500 Jy even at high radio frequencies. Our observations show that GRPs can be found in all phases of ordinary radio emission including the two high frequency components (HFCs) visible only between 5 and 9 GHz [Moffett, D.A., Hankins, T.H. Multifrequency radio observations of the Crab pulsar. Astrophys. J. 468, 779–783, 1996]. This leads us to believe that there is no difference in the emission mechanism of the main pulse (MP), inter pulse (IP) and HFCs. High resolution dynamic spectra from our recent observations of giant pulses with the Effelsberg telescope at a center frequency of 8.35 GHz show distinct spectral maxima within our observational bandwidth of 500 MHz for individual pulses. Their narrow band components appear to be brighter at higher frequencies (8.6 GHz) than at lower ones (8.1 GHz). Moreover, there is an evidence for spectral evolution within and between those structures. High frequency features occur earlier than low frequency ones. Strong plasma turbulence might be a feasible mechanism for the creation of the high energy densities of ∼6.7 × 104 erg cm−3 and brightness temperatures of ∼1031 K.  相似文献   

12.
An East–West one-dimensional radio interferometer array consisting of 5 parabolic dish antennas has been set-up at Cachoeira Paulista, Brazil (Longitude: 45°0′20″W, Latitude: 22°41′19″S) for observations of Sun and some of the strong sidereal sources by the Instituto Nacional de Pesquisas Espaciais (INPE), Brazil. This is Phase-1 of the proposed Brazilian Decimetre Array (BDA) and can be operated at any frequency in the range 1.2–1.7 GHz. The instrument is functional since November 2004 onwards at 1.6 GHz. The angular and temporal resolution at the above frequency range are ∼3′ and 100 ms, respectively. We present here the initial solar observations carried out with this array.  相似文献   

13.
On January 20, 2005, 7:02–7:05 UT the Aragats Multidirectional Muon Monitor (AMMM) located at 3200 m a.s.l. registered enhancement of the high energy secondary muon flux (threshold ∼5 GeV). The enhancement, lasting for 3 min, has statistical significance of ∼4σ and is related to the X7.1 flare seen by the GOES, and very fast (>2500 km/s) CME seen by SOHO, and the Ground Level Enhancements (GLE) #69 detected by the world-wide network of neutron monitors and muon detectors. The energetic and temporal characteristics of the muon signal from the AMMM are compared with the characteristics of other monitors located at the Aragats Space-Environmental Center (ASEC) and with other neutron and muon detectors. Since secondary muons with energies >5 GeV are corresponding to solar proton primaries with energies 20–30 GeV we conclude that in the episode of the particle acceleration at 7:02–7:05 UT 20 January 2005 solar protons were accelerated up to energies in excess of 20 GeV.  相似文献   

14.
Recent review study done jointly by 19 experts of 17 institutes shows zero trend of temperature in the upper mesosphere. In the light of this latest development, we have examined the long-term changes in electron density, [e], in this region. The study has been concentrated at 80 km. At this altitude, electrons are mainly produced by the interaction of nitric oxide, NO, by solar Ly-α. Any long-term change in this flux will affect trend of [e]. Considering this flux proportional to 10.7 cm solar flux, analysis of available 10.7 cm solar flux data from 1948 to 2003 has been made. A decreasing trend up to about 1970 and then an increasing trend are found. The over-all increasing trend of Ly-α flux during the past five decades is ∼0.17% per year. This increase also gives a ∼0.17% increasing trend per year in [e]. This non-anthropogenic increase is much less compared to the observed increase in [e] which is reported to be >0.7% per year. The observed increase in [e] of this magnitude will then, predominantly, be due to the anthropogenic effect. In zero trend in temperature, significant change in electron loss coefficient, αeff, and [NO] are unlikely to take place to cause a significant change in [e]. The increase in [e] > 0.7% per year then can be explained by considering a decreasing trend in [O2].  相似文献   

15.
In this review I discuss the various γ-ray emission lines that can be expected and, in some cases have been observed, from radioactive explosive nucleosynthesis products. The most important γ-ray lines result from the decay chains of 56Ni, 57Ni, and 44Ti. 56Ni is the prime explosive nucleosynthesis product of Type Ia supernovae, and its decay determines to a large extent the Type Ia light curves. 56Ni is also a product of core-collapse supernovae, and in fact, γ-ray line emission from its daughter product, 56Co, has been detected from SN1987A by several instruments. The early occurrence of this emission was surprising and indicates that some fraction of 56Ni, which is synthesized in the innermost supernova layers, must have mixed with the outermost supernova ejecta.Special attention is given to the γ-ray line emission of the decay chain of 44Ti (44Ti  44Sc  44Ca), which is accompanied by line emission at 68, 78, and 1157 keV. As the decay time of 44Ti is ∼86 yr, one expects this line emission from young supernova remnants. Although the 44Ti yield (typically 10−5–10−4M) is not very high, its production is very sensitive to the energetics and asymmetries of the supernova explosion, and to the mass cut, which defines the mass of the stellar remnant. This makes 44Ti an ideal tool to study the inner layers of the supernova explosion. This is of particular interest in light of observational evidence for asymmetric supernova explosions.The γ-ray line emission from 44Ti has so far only been detected from the supernova remnant Cas A. I discuss these detections, which were made by COMPTEL (the 1157 keV line) and BeppoSAX (the 68 and 78 keV lines), which, combined, give a flux of (2.6 ± 0.4 ± 0.5) × 10−5 ph cm−2 s−1 per line, suggesting a 44Ti yield of (1.5 ± 1.0) × 10−4M. Moreover, I present some preliminary results of Cas A observations by INTEGRAL, which so far has yielded a 3σ detection of the 68 keV line with the ISGRI instrument with a flux that is consistent with the BeppoSAX detections. Future observations by INTEGRAL-ISGRI will be able to constrain the continuum flux above 90 keV, as the uncertainty about the continuum shape, is the main source of systematic error for the 68 and 78 keV line flux measurements. Moreover, with the INTEGRAL-SPI instrument it will be possible to measure or constrain the line broadening of the 1157 keV line. A preliminary analysis of the available data indicates that narrow line emission (i.e., Δv < 1000 km s−1) can be almost excluded at the 2σ level, for an assumed line flux of 1.9 × 10−5 ph cm−2 s−1.  相似文献   

16.
We present the results of a preliminary spectral analysis performed on the BeppoSAX and XMM observations of the Vela plerion. The broad energy range covered by the instruments on board the two observatories allows an evaluation of the spectral parameters of the high energy emission model and provides an indication on the morphology of the source emission above 10 keV. We confirm the softening of the PWN spectrum (3–10 keV band) at distances greater than 4′ from the pulsar and estimate the diameter of the high energy (>10 keV) emission region to be on the order of 25′–30′.  相似文献   

17.
The absence of a supernova remnant (SNR) shell surrounding the Crab and other plerions (pulsar wind nebulae) has been a mystery for three decades. G21.5-0.9 is a particularly intriguing plerionic SNR in which the central powering engine is not yet detected. Early CHANDRA observations revealed a faint extended X-ray halo which was suggested to be associated with the SNR shell; however its spectrum was non-thermal, unlike what is expected from an SNR shell. On the other hand, a plerionic origin to the halo is problematic since the X-ray plerion would be larger than the radio plerion. We present here our analysis of an integrated 245 ks of archival CHANDRA data acquired with the High-Resolution Camera (HRC) and 520 ks acquired with the Advanced CCD Imaging Spectrometer (ACIS). This study provides the deepest and highest resolution images obtained to date. The resulting images reveal for the first time: (1) a limb-brightened morphology in the eastern section of the halo, and (2) a rich structure in the inner (40″-radius) bright plerion including wisps and a double-lobed morphology with an axis of symmetry running in the northwest–southeast direction. Our spatially resolved spectroscopic study of the ACIS-I data indicates that the photon index steepens with increasing distance from the central point source out to a radius of 40″ then becomes constant at ∼2.4 in the X-ray halo (for a column density NH = 2.2 × 1022 cm−2). No line emission was found from the eastern limb; however marginal evidence for line emission in the halo’s northern knots was found. This study illustrates the need for deep CHANDRA observations to reveal the missing SNR material in Crab-like plerions.  相似文献   

18.
We present rotational temperature measurements of the mesospheric OH emission layer using a meridional imaging spectrograph at Millstone Hill (42.6°N, 72.5°W). The system is equipped with a state-of-the-art bare-CCD detector and can yield simultaneous quasi-meridional images of the mesospheric OH and O2 intensity and temperature fields at 87 and 94 km altitude during the course of each night. A cross-validation study of the rotational OH temperature measurements obtained on 61 nights during the autumnal months of 2005–2007 was undertaken with near-simultaneous kinetic temperature measurements made by the SABER instrument aboard the NASA TIMED satellite during overpasses of Millstone Hill. Excellent agreement was obtained between the two datasets with the small differences being attributable to differences in the spatial and temporal averaging inherent between the two datasets.  相似文献   

19.
The GOES X3.9 flare on 03 November 2003 at ∼09:45 UT was observed from metric to millimetric wavelengths by the Nançay Radioheliograph (NRH), the Radio Solar Telescope Network (RSTN) and by radio instruments operated by the Institute of Applied Physics (University of Bern). This flare was simultaneously observed and imaged up to several 100 keV by the RHESSI experiment. The time profile of the X-ray emission above 100 keV and of the radio emissions shows two main parts, impulsive emission lasting about 3 min and long duration emission (partially observed by RHESSI) separated in time by 4 min. We shall focus here on the modulations of the broad-band radio continua and of the X-ray emissions observed in the second part of the flare. The observations suggest that gyrosynchrotron emission is the prevailing emission mechanism even at decimetric wavelengths for the broad-band radio emission. Following this interpretation, we deduce the density and the magnetic field of the decimetric sources and briefly comment on possible interpretations of the modulations.  相似文献   

20.
The results from direct ground-based solar UV irradiance measurements and the total ozone content (TOC) over Stara Zagora (42° 25′N, 25° 37′E), Bulgaria are presented. During the period 1999–2003 the TOC data show seasonal variations, typical for the middle latitudes – maximum in the spring and minimum in the autumn. The comparison between TOC ground-based data and Global Ozone Monitoring Experiment (GOME) satellite-borne ones shows a seasonal dependence of the differences between them.A strong negative relationship between the total ozone and the 305 nm wavelength irradiance was found. The dependence between the two variables is significant (r = −0.62 ± 0.18) at 98% confidence level.The direct sun UV doses for some specific biological effects (erythema and eyes) are obtained. The estimation of the radiation amplification factor RAF shows that the ozone reduction by 1% increases the erythemal dose by 2.3%. The eye-damaging doses are more influenced by the TOC changes and in this case RAF = −2.7%.The amount of these biological doses depended on the solar altitude over the horizon. This dependence was not so strong when the total ozone content in the atmosphere was lower.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号