首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
The paper presents results of our study of dependence of geomagnetic activity from geoeffective parameters taking into account mutual orientation of the interplanetary magnetic field, electric field of the solar wind and geomagnetic moment. We attract a reconnection model elaborated by us made allowance for changes of geometry of the solar wind–magnetosphere interaction during annual and diurnal motions of the Earth. We take as our data base the interplanetary magnetic field and solar wind velocity measured at 1 a.u. at ecliptic plane for the period of 1963–2005 and Kp, Dst, am indices. Taken as a whole a geoeffective parameter suggested by us explains 95% of observed variations of the indices. Changes of the geometric factor determined by mutual orientation of the solar wind electric field and geomagnetic moment explain larger than 75% of observed statistical variations of Dst and am indices. Based on our results we suggest a new explanation of semi-annual and UT variation of geomagnetic activity.  相似文献   

2.
The response of the ionospheric F-region in the equatorial and low latitude regions in the Brazilian sector during the super geomagnetic storm on 06–07 April 2000 has been studied in the present investigation. The geomagnetic storm reached a minimum Dst of −288 nT at 0100 UT on 07 April. In this paper, we present vertical total electron content (VTEC) and phase fluctuations (in TECU/min) from GPS observations obtained at Imperatriz (5.5°S, 47.5°W; IMPZ), Brasília (15.9°S, 47.9°W; BRAZ), Presidente Prudente (22.12°S, 51.4°W; UEPP), and Porto Alegre (30.1°S, 51.1°W; POAL) during the period 05–08 April. Also, several GPS-based TEC maps are presented from the global GPS network, showing widespread and drastic TEC changes during the different phases of the geomagnetic storm. In addition, ion density measurements on-board the satellite Defense Meteorological Satellite Program (DMSP) F15 orbiting at an altitude of 840 km and the first Republic of China satellite (ROCSAT-1) orbiting at an altitude of 600 km are presented. The observations indicate that one of the orbits of the DMSP satellite is fairly close to the 4 GPS stations and both the DMSP F15 ion-density plots and the phase fluctuations from GPS observations show no ionospheric irregularities in the Brazilian sector before 2358 UT on the night of 06–07 April 2000. During the fast decrease of Dst on 06 April, there is a prompt penetration of electric field of magnetospheric origin resulting in decrease of VTEC at IMPZ, an equatorial station and large increase in VTEC at POAL, a low latitude station. This resulted in strong phase fluctuations on the night of 06–07 April, up to POAL. During the daytime on 07 April during the recovery phase, the VTEC observations show positive ionospheric storm at all the GPS stations, from IMPZ to POAL, and the effect increasing from IMPZ to POAL. This is possibly linked to the equatorward directed meridional wind. During the daytime on 08 April (the recovery phase continues), the VTEC observations show very small negative ionospheric storm at IMPZ but the positive ionospheric storm effect is observed from BRAZ to POAL possibly linked to enhancement of the equatorial ionospheric anomaly.  相似文献   

3.
We report on a study of cosmic ray cutoff rigidity variations during the strong geomagnetic storm of 18–24 November 2003. We employed the most recent Tsyganenko magnetospheric model to represent the very strong disturbed Magnetosphere. We used this magnetic field for the cosmic ray trajectory calculations to determine the geomagnetic cutoff rigidity throughout this period of severe geomagnetic disturbance. We determine the cutoff rigidity changes during this period by two methods, by trajectory calculations and by the spectrographic global survey method. The values of the change of cutoff rigidities obtained by two different methods are correlated with the Dst and interplanetary magnetic field and plasma parameters and result in correlation coefficients in the range 0.63–0.84 for the various cosmic ray stations. The result of this study indicates that the most significant contributions to the cutoff rigidity changes are due to Dst variation although the influence of solar wind density and Bz and By components of IMF variations is significant.  相似文献   

4.
Intense (n + 1/2) fce emissions are a common phenomenon observed in the terrestrial inner magnetosphere. One of their interests is their possible effect in the pitch angle scattering of plasmasheet keV-electron, leading to diffuse auroras. In this paper, we present CLUSTER’s point of view about this topic, in the equatorial region of the plasmasphere, via a statistical study using 3 years of data. Spectral characteristics of these waves, which represent an important clue concerning their generation mechanism, are obtained using WHISPER data near perigee. Details on the wave spectral signature are shown in an event study, in particular their splitting in fine frequency bands. The orbit configuration of the four spacecraft offers a complete sampling on all MLT sectors. A higher occurrence rate of the emissions in the dawn sector and their confinement to the geomagnetic equator, pointed out in previous studies, are confirmed and described with additional details. The proximity of emission sites, both to the plasmapause layer and to the geomagnetic equator surface, seems to be of great importance in the behaviour of the (n + 1/2) fce wave characteristics. Our study indicates for the first time, that both the intensity of (n + 1/2) fce emissions, and the number of harmonic bands they cover, are increasing as the observation point is located further away outside from the plasmapause layer. Moreover, a study of the wave intensity in the first harmonic band (near 3/2 fce) shows higher amplitude for these emissions than previous published values, these emissions can play a role in the scattering of hot electrons. Finally, geomagnetic activity influence, studied via time series of the Dst index preceding observations, indicates that (n + 1/2) fce emission events are observed at CLUSTER position under moderate geomagnetic activity conditions, no specific Dst time variation being required.  相似文献   

5.
6.
Earthquake (EQ) anomalies in the form of enhancement and depletion in ionospheric Total Electron Content (TEC) from Global Positioning System (GPS) may considerably alarm about short and long term precursors of the impending main shock. In this paper, TEC anomalies are investigated from permanent GPS ground-stations in Turkey associated to Mw ≥ 6.0 EQs occurred in 2011–2012. Temporal and spatial analyses of TEC at 2 h sampling have shown significant evidences about EQ induced ionospheric anomalies during 10–14 h of UT (Universal Time) within 5 days before Mw 6.0 Greece, and Mw 7.1, Turkish EQ. Spatial analyses have manifested arrival of TEC anomalies at UT = 10 h to epicenter of both EQs, which linger above epicenter during UT = 12–14 h and left seismogenic zone after UT = 14 h before every EQ during Kp < 3 and Dst = 0 nT. Meanwhile, a geomagnetic storm (Dst < -100 nT) induce perturbation two days after the Mw 7.1 Turkish EQ, showing no relation with epicenter during spatial analysis. It also shows that TEC can be useful to distinguish geomagnetic storm variations to successfully detect EQ precursors. These anomalies during quiet storm (Kp < 3; Dst = 0 nT) conditions may be effective to link the lithosphere and ionosphere in severe seismic zones to detect EQ precursors before future EQs. Interpretation of TEC anomalies and it enhancements over EQ epicenters during UT = 12–14 h for both EQs have shown that EQs anomalies only occurred in particular time. Whereas, geomagnetic storm effect occurred during whole abnormal day over the Earth.  相似文献   

7.
The variations in the horizontal and declination components of the geomagnetic field in response to the interplanetary shocks driven by fast halo coronal mass ejections, fast solar wind streams from the coronal hole regions and the dynamic pressure pulses associated with these events are studied. Close association between the field-aligned current density (j) and the fluctuations in the declination component (ΔDABG) at Alibag is found for intense storm conditions. Increase in the dawn-dusk interplanetary electric field (Ey) and ΔDABG are generally in phase. However, when the magnetospheric electric field is directed from dusk to dawn direction, a prominent scatter occurs between the two. It is suggested that low-latitude ground magnetic data may serve as a proxy for the interplanetary conditions in the solar wind.  相似文献   

8.
The effects of the energetic phenomena of the Sun, flares and coronal mass ejections (CMEs) on the Earth’s ionosphere–magnetosphere, through the solar wind, are the sources of the geomagnetic disturbances and storms collectively known as Space Weather. The research on the influence of Space Weather on biological and physiological systems is open. In this work we study the Space Weather   impact on Acute Coronary Syndromes (ACS) distinguishing between ST-segment elevation acute coronary syndromes (STE–ACS) and non-ST-segment elevation acute coronary syndromes (NSTE–ACS) cases. We compare detailed patient records from the 2nd Cardiologic Department of the General Hospital of Nicaea (Piraeus, Greece) with characteristics of geomagnetic storms (DSTDST), solar wind speed and statistics of flares and CMEs which cover the entire solar cycle 23 (1997–2007). Our results indicate a relationship of ACS to helio-geomagnetic activity as the maximum of the ACS cases follows closely the maximum of the solar cycle. Furthermore, within very active periods, the ratio NSTE–ACS to STE–ACS, which is almost constant during periods of low to medium activity, changes favouring the NSTE–ACS. Most of the ACS cases exhibit a high degree of association with the recovery phase of the geomagnetic storms; a smaller, yet significant, part was found associated with periods of fast solar wind without a storm.  相似文献   

9.
Using nine years (1995–2003) of solar wind plasma and magnetic field data, solar sunspot number, and geomagnetic activity data, we investigated the geomagnetic activity associated with magnetic clouds (MCs), magnetic cloud-like structures (MCLs), and interplanetary shock waves. Eighty-two MCs and one hundred and twenty-two MCLs were identified by using solar wind and magnetic field data from the WIND mission, and two hundred and sixty-one interplanetary shocks were identified over the period of 1995–2003 in the vicinity of Earth. It is found that MCs are typically more geoeffective than MCLs or interplanetary shocks. The occurrence frequency of MCs is not well correlated with sunspot number. By contrast, both occurrence frequency of MCLs and sudden storm commencements (SSCs) are well correlated with sunspot number.  相似文献   

10.
The study investigated the effects of intense geomagnetic storms of 2015 on the occurrences of large scale ionospheric irregularities over the African equatorial/low-latitude region. Four major/intense geomagnetic storms of 2015 were analyzed for this study. These storms occurred on 17th March 2015 (?229?nT), 22nd June 2015 (?204?nT), 7th October 2015 (?124?nT), and 20th December 2015 (?170?nT). Total Electron Content (TEC) data obtained from five African Global Navigation Satellite Systems (GNSS) stations, grouped into eastern and western sectors were used to derive the ionospheric irregularities proxy indices, e.g., rate of change of TEC (ROT), ROT index (ROTI) and ROTI daily average (ROTIAVE). These indices were characterized alongside with the disturbance storm time (Dst), the Y component of the Interplanetary Electric Field (IEFy), polar cap (PC) index and the H component of the Earth’s magnetic field from ground-based magnetometers. Irregularities manifested in the form of fluctuations in TEC. Prompt penetration of electric field (PPEF) and disturbance dynamo electric field (DDEF) modulated the behaviour of irregularities during the main and recovery phases of the geomagnetic storms. The effect of electric field over both sectors depends on the local time of southward turning of IMF Bz. Consequently, westward electric field inhibited irregularities during the main phase of March and October 2015 geomagnetic storms, while for the June 2015 storm, eastward electric field triggered weak irregularities over the eastern sector. The effect of electric field on irregularities during December 2015 storm was insignificant. During the recovery phase of the storms, westward DDEF suppressed irregularities.  相似文献   

11.
Hourly magnetic readings of H and D from six geomagnetic observatories in Finland and Russia were utilized for analysis of the time behavior of the extreme space weather event of August/September 1859. The observatories cover about 200° in longitude and magnetic latitudes 45–60°N.  相似文献   

12.
Classification and quantification of the interplanetary structures causing intense geomagnetic storms (Dst?≤??100?nT) that occurred during 1997–2016 are studied. The subject of this consists of solar wind parameters of seventy-three intense storms that are associated with the southward interplanetary magnetic field. About 30.14% of the storms were driven by a combination of the sheath and ejecta (S?+?E), magnetic clouds (MC) and sheath field (S) are 26% each, 10.96% by combined sheath and MCs (S?+?C), while 5.48% of the storms were driven by ejecta (E) alone. Therefore, we want to aver that for storms driven by: (1) S?+?E. The Bz is high (≥10?nT), high density (ρ) (>10?N/cm3), high plasma beta (β) (>0.8), and unspecified (i.e. high or low) structure of the plasma temperature (T) and the flow speed (V); (2) MC. The Bz is ≥10?nT, low temperature (T?≤?400,000?K), low ρ (≤10?N/cm3), high V (≥450?km), and low β (≤0.8); (3) The structures of S?+?C are similar to that of MC except that the V is low (V?≤?450?km); (4) S. The Bz is high, low T, high ρ, unspecified V, and low β; and (5) E. Is when the structures are directly opposite of the one driven by MCs except for high V. Although, westward ring current indicates intense storms, but the large intensity of geomagnetic storms is determined by the intense nature of the electric field strength and the Bz. Therefore, great storms (i.e. Dst?≤??200?nT) are manifestation of high electric field strength (≥13?mV/m).  相似文献   

13.
Here we compare the traditional analog measure of geomagnetic activity, Ak, with the more recent digital indices of IHV and Ah based on hourly mean data, and their derivatives at the auroral station Sodankylä. By this selection of indices we study the effects of (i) analog vs. digital technique, and (ii) full local-time vs. local night-time coverage on quantifying local geomagnetic activity. We find that all other indices are stronger than Ak during the low-activity cycles 15–16 suggesting an excess of very low scalings in Ak at this time. The full-day indices consistently depict stronger correlation with the interplanetary magnetic field strength, while the night-time indices have higher correlation with solar wind speed. The Ak index correlates better with the digital indices of full-day coverage than with any night-time index. However, Ak depicts somewhat higher activity levels than the digital full-day indices in the declining phase of the solar cycle, indicating that, due to their different sampling rates, the latter indices are less sensitive to high-frequency variations driven by the Alfvén waves in high-speed streams. On the other hand, the night-time indices have an even stronger response to solar wind speed than Ak. The results strongly indicate that at auroral latitudes, geomagnetic indices with different local time coverage reflect different current systems, which, by an appropriate choice of indices, allows studying the century-scale dynamics of these currents separately.  相似文献   

14.
In this short paper we examine the possible connection between atmospheric parameters measured at low and middle altitudes and geomagnetic storms occurred in 2000 and 2003. For that, from a chain of stations located near the meridian 60°W we compare the storm time values of temperature and wind speed with their standard deviation 2σ obtained from quiet time values. We observed statistically significant variations at several altitudes during the storm recovery phase and after it, both in neutral wind speed and temperature. The results obtained suggest that atmospheric parameters could be affected by geomagnetic storms.  相似文献   

15.
The interplanetary magnetic field, geomagnetic variations, virtual ionosphere height h′F, and the critical frequency foF2 data during the geomagnetic storms are studied to demonstrate relationships between these phenomena. We study 5-min ionospheric variations using the first Western Pacific Ionosphere Campaign (1998–1999) observations, 5-min interplanetary magnetic field (IMF) and 5-min auroral electrojets data during a moderate geomagnetic storm. These data allowed us to demonstrate that the auroral and the equatorial ionospheric phenomena are developed practically simultaneously. Hourly average of the ionospheric foF2 and h′F variations at near equatorial stations during a similar storm show the same behavior. We suppose this is due to interaction between electric fields of the auroral and the equatorial ionosphere during geomagnetic storms. It is shown that the low-latitude ionosphere dynamics during these moderate storms was defined by the southward direction of the Bz-component of the interplanetary magnetic field. A southward IMF produces the Region I and Region II field-aligned currents (FAC) and polar electrojet current systems. We assume that the short-term ionospheric variations during geomagnetic storms can be explained mainly by the electric field of the FAC. The electric fields of the field-aligned currents can penetrate throughout the mid-latitude ionosphere to the equator and may serve as a coupling agent between the auroral and the equatorial ionosphere.  相似文献   

16.
Moderate geomagnetic storms occurred during January 22–25, 2012 period. The geomagnetic storms are characterized by different indices and parameters. The SYM-H value on January 22 increased abruptly to 67 nT at sudden storm commencement (SSC), followed by a sharp decrease to −87 nT. A second SSC on January 24 followed by a shock on January 25 was also observed. These SSCs before the main storms and the short recovery periods imply the geomagnetic storms are CME  -driven. The sudden jump of solar wind dynamic pressure and IMF BzBz are also consistent with occurrence of CMEs. This is also reflected in the change in total electron content (TEC) during the storm relative to quiet days globally. The response of the ionospheric to geomagnetic storms can also be detected from wave components that account for the majority of TEC variance during the period. The dominant coherent modes of TEC variability are diurnal and semidiurnal signals which account upto 83% and 30% of the total TEC variance over fairly exclusive ionospheric regions respectively. Comparison of TEC anomalies attributed to diurnal (DW1) and semidiurnal (SW2) tides, as well as stationary planetary waves (SPW1) at 12 UTC shows enhancement in the positive anomalies following the storm. Moreover, the impact of the geomagnetic storms are distinctly marked in the daily time series of amplitudes of DW1, SW2 and SPW1. The abrupt changes in amplitudes of DW1 (5 TECU) and SW2 (2 TECU) are observed within 20°S–20°N latitude band and along 20°N respectively while that of SPW1 is about 3 TECU. Coherent oscillation with a period of 2.4 days between interplanetary magnetic field and TEC was detected during the storm. This oscillation is also detected in the amplitudes of DW1 over EIA regions in both hemispheres. Eventhough upward coupling of quasi two day wave (QTDWs) of the same periodicity, known to have caused such oscillation, are detected in both ionosphere and upper stratosphere, this one can likely be attributed to the geomagnetic storm as it happens after the storm commencement. Moreover, further analysis has indicated that QTDWs in the ionosphere are strengthened as a result of coherent oscillation of interplanetary magnetic field with the same frequency as QTDWs. On the otherhand, occurrences of minor SSW and geomagnetic storms in quick succession complicated clear demarcation of attribution of the respective events to variability of QTDWs amplitudes over upper stratosphere.  相似文献   

17.
In the present work, we analyzed the daytime vertical E × B drift velocities obtained from Jicamarca Unattended Long-term Ionosphere Atmosphere (JULIA) radar and ΔH component of geomagnetic field measured as the difference between the magnitudes of the horizontal (H) components between two magnetometers deployed at two different locations Jicamarca, and Piura in Peru for 22 geomagnetically disturbed events in which either SC has occurred or Dstmax < ?50 nT during the period 2006–2011. The ΔH component of geomagnetic field is measured as the differences in the magnitudes of horizontal H component between magnetometer placed directly on the magnetic equator and one displaced 6–9° away. It will provide a direct measure of the daytime electrojet current, due to the eastward electric field. This will in turn gives the magnitude of vertical E × B drift velocity in the F region. A positive correlation exists between peak values of daytime vertical E × B drift velocity and peak value of ΔH for the three consecutive days of the events. It was observed that 45% of the events have daytime vertical E × B drift velocity peak in the magnitude range 10–20 m/s and 20–30 m/s and 20% have peak ΔH in the magnitude range 50–60 nT and 80–90 nT. It was observed that the time of occurrence of the peak value of both the vertical E × B drift velocity and the ΔH have a maximum (40%) probability in the same time range 11:00–13:00 LT. We also investigated the correlation between E × B drift velocity and Dst index and the correlation between delta H and Dst index. A strong positive correlation is found between E × B drift and Dst index as well as between delta H and Dst Index. Three different techniques of data analysis – linear, polynomial (order 2), and polynomial (order 3) regression analysis were considered. The regression parameters in all the three cases were calculated using the Least Square Method (LSM), using the daytime vertical E × B drift velocity and ΔH. A formula was developed which indicates the relationship between daytime vertical E × B drift velocity and ΔH, for the disturbed periods. The E × B drift velocity was then evaluated using the formulae thus found for the three regression analysis and validated for the ‘disturbed periods’ of 3 selected events. The E × B drift velocities estimated by the three regression analysis have a fairly good agreement with JULIA radar observed values under different seasons and solar activity conditions. Root Mean Square (RMS) errors calculated for each case suggest that polynomial (order 3) regression analysis provides a better agreement with the observations from among the three.  相似文献   

18.
Solar quiet daily (Sq) variation in the earth’s magnetic field along the East African meridian was studied using data of the H, D and Z components recorded with Magnetic Data Acquisition System of SERC. One year data recorded at ten African geomagnetic observatories was used in the analysis of worldwide solar quiet daily variation (Wsq). The study revealed that the focus of Sq (H) in the southern hemisphere lies at the boundary of low and middle latitude region. Noon-time enhancement of Sq (H) was generally noticed at all stations along the meridian, though it is latitudinal dependent in terms of magnitude as it reduces with distance from dip equator. In addition, night-time variations also occur in small magnitude along African meridian in Sq (H) and Sq (Z) which could be attributed to non-ionospheric sources. Semi-diurnal variation was noticed in Sq (D) at all stations except in AAB that is under the influence of electrojet current. Dusk sector calm condition of Sq (D) current was notice in some stations and the same condition was also noticed at dawn sector in some other stations. The usual sunrise maximum and sunset minimum for D component at stations north of dip equator as well as sunrise minimum and sunset maximum was found to increase with distance away from dip equator. Day-time perturbation of Sq current was noticed to be more pronounced in all the three field elements. Mass plots of annual mean hourly value show contrasting phase pattern about the focus in H element and the results of the variations at each region with the associated standard error. It was concluded from the result of correlation coefficients computed that different currents system flowing in opposite directions could be responsible for contrasting patterns.  相似文献   

19.
A possible quantitative explanation of the semi-annual variation in thermospheric density has been obtained in terms of a semi-annual variation in the computed globally averaged vertical energy carried by propagating tides from the lower and middle atmosphere into the thermosphere. The effect is primarily due to seasonal changes in the distribution of water vapor and in the solar declination angle and Sun-Earth distance. An MSIS-83 empirical model of the thermosphere, representing a revision of the earlier MSIS models, has been prepared. The database used covers a wider range of solar activity than previous models and an improved magnetic storm representation is included. Atomic oxygen profiles in the 100 to 160 km altitude region of the auroral thermosphere have been recalculated from measured quenching of N2(A3u+) using the latest laboratory rates and the results are in good agreement with the mean CIRA 1972 profile. A new empirical model of thermospheric variations with geomagnetic activity has been developed incorporating variations with local magnetic time, latitude dependent terms which can vary with the magnitude of the geomagnetic disturbance, and an altitude dependent expression for the equatorial wave. A new index ML, derived from the AL index, has been developed that appears to have promise to represent the variations of thermospheric species with geomagnetic activity. Satellite measured values of solar UV flux, ground-based observations of CaK plages, sunspot numbers and 10.7 cm solar radio flux have been analyzed for temporal variations. Some differences have been identified and the significance to empirical and theoretical upper atmosphere models is discussed.  相似文献   

20.
The magnetic field structure and the spatial characteristics of the large-scale currents in the magnetospheric tail were studied during quiet and moderately disturbed geomagnetic conditions in 2009. The magnetic field of the currents other than the tail current was calculated in terms of a paraboloid model of the Earth’s magnetosphere, A2000, and was subtracted from measurements. It was found on the base of obtained tail current magnetic field radial distribution that the inner edge of the tail current sheet is located in the night side magnetosphere, at distances of about 10 RE and of about 7 RE during quiet and disturbed periods respectively. During the disturbance of February 14, 2009 (Dstmin ∼ −35 nT), the Bx and the Bz component of the tail current magnetic field near its inner edge were about 60 nT, and −60 nT that means that strong cross-tail current have been developed. The tail current parameters at different time moments during February 14, 2009 have been estimated. Solar wind conditions during this event were consistent with those during moderate magnetic storms with minimum Dst of about −100 nT. However, the magnetospheric current systems (magnetopause and cross-tail currents) were located at larger geocentric distances than typical during the 2009 extremely quiet epoch and did not provide the expected Dst magnitude. Very small disturbance on the Earth’s surface was detected consistent with an “inflated” magnetosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号