首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
On the basis of results obtained in our paper [Dorman, L.I. Long-term cosmic ray intensity variation and part of global climate change, controlled by solar activity through cosmic rays, Paper D2.1/C2.2/E3.1-0097-04. Adv. Space Res., 2004 (accepted)], we determine: the dimension of the Heliosphere (modulation region), radial diffusion coefficient and other parameters of convection–diffusion; drift mechanisms of long-term variations of cosmic ray (CR) dependence on particle energy; level of solar activity (SA); and generally, the solar magnetic field. We obtain this important information on the basis of CR and SA data in the past, taking into account the theory of convection–diffusion and global drift modulation of galactic CR in the Heliosphere. By using these results and other regularly published predictions of expected SA variation in the near future, as well as predictions of the next SA cycle, we may make predictions of long-term cosmic ray intensity variation expected in the near future (up to 10–12 years). In [Dorman, L.I. Long-term cosmic ray intensity variation and part of global climate change, controlled by solar activity through cosmic rays, Paper D2.1/C2.2/E3.1-0097-04. Adv. Space Res., 2004 (accepted)], properties of connections between long-term variation in CR intensity and some part of a global climate change were estimated, controlled by solar activity through CR. We show that in this way we may make predictions of some part of a global climate change expected in the near future (up to 10–12 years and maybe more, depending upon the period during which definite predictions of SA can be made), controlled by solar activity through CR. In this case, estimations of expected long-term changes in the planetary distribution of cutoff rigidities, which also influence CR intensity, as well as CR-influenced effects on global climate variation, become important.  相似文献   

2.
We have studied conditions in interplanetary space, which can have an influence on galactic cosmic ray (CR) and climate change. In this connection the solar wind and interplanetary magnetic field parameters and cosmic ray variations have been compared with geomagnetic activity represented by the equatorial Dst index from the beginning 1965 to the end of 2012. Dst index is commonly used as the solar wind–magnetosphere–ionosphere interaction characteristic. The important drivers in interplanetary medium which have effect on cosmic rays as CMEs (coronal mass ejections) and CIRs (corotating interaction regions) undergo very strong changes during their propagation to the Earth. Because of this CMEs, coronal holes and the solar spot numbers (SSN) do not adequately reflect peculiarities concerned with the solar wind arrival to 1 AU. Therefore, the geomagnetic indices have some inestimable advantage as continuous series other the irregular solar wind measurements. We have compared the yearly average variations of Dst index and the solar wind parameters with cosmic ray data from Moscow, Climax, and Haleakala neutron monitors during the solar cycles 20–23. The descending phases of these solar cycles (CSs) had the long-lasting solar wind high speed streams occurred frequently and were the primary contributors to the recurrent Dst variations. They also had effects on cosmic rays variations. We show that long-term Dst variations in these solar cycles were correlated with the cosmic ray count rate and can be used for study of CR variations. Global temperature variations in connection with evolution of Dst index and CR variations is discussed.  相似文献   

3.
We demonstrate that the general features of the radial and azimuthal components of the anisotropy of galactic cosmic rays can be studied by the harmonic analysis method using data from an individual neutron monitor with cut off rigidity <5 GV. In particular, we study the characteristics of the 27-day (solar rotation period) variations of the galactic cosmic ray intensity and anisotropy, solar wind velocity, interplanetary magnetic field strength and sunspot number. The amplitudes of the 27-day variations of the galactic cosmic ray anisotropy are greater, and the phases more clearly established, in A > 0 polarity periods than in A < 0 polarity periods at times of minimum solar activity. The phases of the 27-day variations of the galactic cosmic rays intensity and anisotropy are opposite with respect to the similar changes of the solar wind velocity in A > 0 polarity periods. No significant dependence of the amplitude of the 27-day variation of the galactic cosmic ray anisotropy on the tilt angle of the heliospheric neutral sheet is found. Daily epicyclegrams obtained by Chree’s method show that the 27-day variations of the galactic cosmic ray anisotropy during A > 0 polarity periods follow elliptical paths with the major axes oriented approximately along the interplanetary magnetic field. The paths are more irregular during A < 0 polarity periods.  相似文献   

4.
Long-term changes of the Arctic frontal zone characteristics near the south-eastern coasts of Greenland were considered, the NCEP/NCAR reanalysis data being used. It was found that in the cold half of the year the temperature gradients in the layer 1000–500 hPa in the region under study reveal strong ∼10-yr and ∼22-yr periodicities that seem to be related to solar activity cycles. The results obtained suggest the influence of solar activity and cosmic ray variations on the structure of the temperature field of the troposphere resulting in the changes of the temperature contrasts in the Arctic frontal zone that, in turn, may affect the intensity of cyclogenesis at middle latitudes. The detected effects seem to indicate an important part of frontal zones in the mechanism of solar activity and cosmic ray variation influence on the development of extratropical baric systems. It is suggested that the variations of the temperature gradients revealed in the Arctic frontal zone are due to the radiative forcing of cloudiness changes which may be associated with geomagnetic activity and cosmic ray variations.  相似文献   

5.
A dynamic galactic cosmic ray model is proposed to quantitatively describe the z=1-28 ions and electrons of E=10-10(5) MeV/nucleon and their particle flux variations around the Earth's orbit and beyond the Earth's magnetosphere due to diverse large-scale variations of solar activity factors. The variations of large-scale heliospheric magnetic fields and the galactic cosmic ray flux variation time delays relative to solar activity variations are simulated. The lag characteristics and sunspot number predictions having been determined in detail, the model can be used to predict galactic cosmic ray flux levels.  相似文献   

6.
The cosmic ray ionization source functions which were obtained using a simplified extensive air shower model are used to calculate the eleven year cycle, seasonal and diurnal variations of ionization rate in the low and middle atmosphere. The ionization source function, as a function of the penetrating depth and the energy of cosmic ray particles, is the ionization rate per unit depth for a unit flux of incoming cosmic ray particles with certain energy.The calculation of the eleven year cycle variation of ionization rate in the low and middle atmosphere due to the modulation of galactic cosmic ray intensity by solar activity shows that the amplitude is larger at a higher magnetic latitude and is generally larger at higher altitudes. The relative amplitude of fluctuation of the ionization peak value (at altitudes near 15 km) is up to 45% in the magnetic polar region. The ionization rate, due to the seasonal variation of the atmospheric density, varies from several per cent below the ionization peak to several tens per cent above the peak. This seasonal variation of ionization rate reaches 35% at 70 km. The diurnal variation of atmospheric densities caused by atmospheric tidal oscillation can produce a diurnal variation of the ionization rate to an amplitude of several per cent at altitudes above 40 km. The diurnal oscillation is less than 1% below 35 km.  相似文献   

7.
We have studied the long-term, steady-state, solar cycle modulation of galactic cosmic ray intensity for seven cycles (17–23). Our analysis is based on the data obtained with a variety of detectors on earth (neutron monitors of the global network and muon detectors) as well as telescopes flown on high altitude balloons and on-board near-earth satellites. The median rigidity of response for these detectors to galactic cosmic ray spectrum lies in the range 1–70 GV. We correlate cosmic ray data to sunspot numbers, Ap, solar wind bulk speed (V), magnetic field (B), as well as to the cycle maximum (M), minimum (m), and the epochs of the solar polar field reversals. This enables us to derive the rigidity dependence of observations, and helps us to define the characteristics of the modulation function in the heliosphere.  相似文献   

8.
The present paper has investigated the associations of solar activity (SA), represented by total solar irradiance (TSI), galactic cosmic rays (GCR) and terrestrial climate parameters in particular the global cloudiness and global surface temperature. To that end, we have analysed thirty five years (1983–2018) data of these parameters and have applied the Granger-causality test in order to assess whether there is any potential predictability power of one indicator to the other. The correlations among the involved parameters are tested using Vector Auto Regression (VAR) model and variance decomposition method. As a result of the above analysis, we have found that the TSI is an important factor and has contributed about 8.77 ± 0.42% in the cosmic ray intensity variations. In case of cloud cover variations, the other three parameters (TSI, cosmic ray and global surface temperature) have played a significant role. Further, the TSI changes have contributed 1.68 ± 0.03% fluctuations in the variance of the cloud cover while the cosmic ray intensity and global surface temperature have contributed about 4.89 ± 0.08% and 10.87 ± 1.41% respectively. In case of the global surface temperature anomaly both TSI and cloud covers have contributed about 5.07 ± 0.47% and 14.42 ± 2.13% fluctuations respectively. Additionally, we have also assessed the impact of internal climate oscillations like multivariate ENSO index (MEI), north Atlantic oscillations (NAO) and quasi biennial oscillations (QBO) on cloud cover variations. The contribution of these internal oscillations e.g. ENSO, NAO and QBO in cloud cover variation were reported as 7.48 ± 1.02%, 5.51 ± 0.16% and 1.36 ± 0.43% respectively.  相似文献   

9.
There is an increasing amount of evidence linking biological effects to solar and geomagnetic disturbances. A series of studies is published referring to the changes in human physiological responses at different levels of geomagnetic activity. In this study, the possible relation between the daily variations of cosmic ray intensity, measured by the Neutron Monitor at the Cosmic Ray Station of the University of Athens (http://cosray.phys.uoa.gr) and the average daily and hourly heart rate variations of persons, with no symptoms or hospital admission, monitored by Holter electrocardiogram, is considered. This work refers to a group of persons admitted to the cardiological clinic of the KAT Hospital in Athens during the time period from 4th to 24th December 2006 that is characterized by extreme solar and geomagnetic activity. A series of Forbush decreases started on 6th December and lasted until the end of the month and a great solar proton event causing a Ground Level Enhancement (GLE) of the cosmic ray intensity on 13th December occurred. A sudden decrease of the cosmic ray intensity on 15th December, when a geomagnetic storm was registered, was also recorded in Athens Neutron Monitor station (cut-off rigidity 8.53 GV) with amplitude of 4%. It is noticed that during geomagnetically quiet days the heart rate and the cosmic ray intensity variations are positively correlated. When intense cosmic ray variations, like Forbush decreases and relativistic proton events produced by strong solar phenomena occur, cosmic ray intensity and heart rate get minimum values and their variations, also, coincide. During these events the correlation coefficient of these two parameters changes and follows the behavior of the cosmic ray intensity variations. This is only a small part of an extended investigation, which has begun using data from the year 2002 and is still in progress.  相似文献   

10.
强磁场扰动对宇宙线调制的统计研究   总被引:5,自引:2,他引:3  
对1978─1982太阳活动高年时发生的激波、强磁场扰动及激波与强磁场扰动共存这三类事件引起的宇宙线变化进行了统计研究,得到如下结果:(1)激波与强磁场扰动共存时引起的宇宙线强度下降最为显着;只有激波或强磁场扰动时,宇宙线的强度变化相对较小;(2)标志速度间断的激波是产生宇宙线Forbush下降的重要因素;(3)速度间断在强磁场扰动对宇宙线的调制中可能起一个触发的作用。   相似文献   

11.
We show that the amplitudes of the 27-day variations of galactic cosmic ray (GCR) intensity, solar wind and solar activity parameters have a periodicity with duration of three to four Carrington rotation periods (3–4 CRP). We assume that the general reason for this phenomenon may be related to similar cyclicity of topological structure of the solar magnetic field lines created owing to the asymmetry of turbulent solar dynamo and solar differential rotation transforming the Sun’s poloidal magnetic field to the toroidal (αω effect), and vice versa.  相似文献   

12.
This brief review addresses the relation between solar activity, cosmic ray variations and the dynamics of the heliosphere. The global features of the heliosphere influence what happens inside its boundaries on a variety of time-scales. Galactic and anomalous cosmic rays are the messengers that convey vital information on global heliospheric changes in the manner that they respond to these changes. By observing cosmic rays over a large range of energies at Earth, and with various space detectors, a better understanding is gained about space weather and climate. The causes of the cosmic ray variability are reviewed, with emphasis on the 11-year and 22-year cycles, step modulation, charge-sign dependent modulation and particle drifts. Advances in this field are selectively discussed in the context of what still are some of the important uncertainties and outstanding issues.  相似文献   

13.
The distribution of the solar cosmic radiation flux over the earth is not uniform, but the result of complex phenomena involving the interplanetary magnetic field, the geomagnetic field and latitude and longitude of locations on the earth. The latitude effect relates to the geomagnetic shield; the longitude effect relates to local time. For anisotropic solar cosmic ray events the maximum particle flux is always along the interplanetary magnetic field direction, sometimes called the Archimedean spiral path from the sun to the earth. During anisotropic solar cosmic ray event, the locations on the earth viewing "sunward" into the interplanetary magnetic field direction will observe the largest flux (when adjustments are made for the magnetic latitude effect). To relate this phenomena to aircraft routes, for anisotropic solar cosmic ray events that occur during "normal quiescent" conditions, the maximum solar cosmic ray flux (and corresponding solar particle radiation dose) will be observed in the dawn quadrant, ideally at about 06 hours local time.  相似文献   

14.
We report on a study of cosmic ray cutoff rigidity variations during the strong geomagnetic storm of 18–24 November 2003. We employed the most recent Tsyganenko magnetospheric model to represent the very strong disturbed Magnetosphere. We used this magnetic field for the cosmic ray trajectory calculations to determine the geomagnetic cutoff rigidity throughout this period of severe geomagnetic disturbance. We determine the cutoff rigidity changes during this period by two methods, by trajectory calculations and by the spectrographic global survey method. The values of the change of cutoff rigidities obtained by two different methods are correlated with the Dst and interplanetary magnetic field and plasma parameters and result in correlation coefficients in the range 0.63–0.84 for the various cosmic ray stations. The result of this study indicates that the most significant contributions to the cutoff rigidity changes are due to Dst variation although the influence of solar wind density and Bz and By components of IMF variations is significant.  相似文献   

15.
We study the 27-day variations of the solar wind velocity, galactic cosmic ray (GCR) intensity and anisotropy in the last minimum epoch of solar activity (2007–2009, A < 0). The average amplitude of the 27-day variation of the galactic cosmic ray anisotropy (A27A) in the current minimum epoch of solar activity (2007–2009, A < 0) is lesser than in previous positive polarity period as it is expected from the drift theory. So, polarity dependence rule for the 27-day variation of the GCR anisotropy is fully kept. It is a universal principle for the amplitudes of the 27-day variation of the GCR anisotropy. At the same time, the average amplitude of the 27-day variation of the GCR intensity (A27I) remains at the same level as for previous minimum epoch 1995–1997 (A > 0) showing by the same token an violation of its polarity dependence rule established earlier. We assume that this phenomenon could be generally related with the well established 27-day variation of the solar wind velocity being in anti-correlation with the similar changes of the 27-day variation of the GCR intensity. Generally, a character of the heliolongitudinal asymmetry of spatial large-scale structure of the solar wind velocity (SWV) established in the recent minimum epoch, preferentially pronounces in the behavior of the 27-day variation of the GCR intensity than anisotropy. The formation of the 27-day variation of the GCR anisotropy preferentially takes place in a restricted disk like local vicinity in the helioequatorial region, whilst the 27-day variation of the GCR intensity is formed in the global three dimensional vicinity of the heliosphere.  相似文献   

16.
We study the temporal evolution of the power rigidity spectrum of the first (27 days) and the second (14 days) harmonics of the 27-day variation of the galactic cosmic ray intensity measured by neutron monitors in the period of 1965–2002. The rigidity spectrum of these variations can be approximated by a power law. We show the rigidity spectra of the first and the second harmonics of the 27-day variation of the galactic cosmic ray intensity have similar time profiles. These spectra are hard (γ ≈ 0.5 ± 0.1) and soft (γ ≈ 1.1 ± 0.2) during solar maximum and minimum activity, respectively. We ascribe this to the alternation of the sizes of the modulation regions responsible for the 27-day variation of the galactic cosmic ray intensity in different epochs of solar activity. Especially, the average radial sizes of the modulation regions of the 27-day variation and the heliolatitudinal extension of the heliolongitudinal asymmetry are smaller during solar minimum than during solar maximum. We show also, that the temporal changes of the power rigidity spectra of the first and the second harmonics of the 27-day variation of the galactic cosmic ray intensity are in a negative correlation with the changes of the rigidity spectrum of the corresponding 11-year variation.  相似文献   

17.
In this work we make an analysis of significant periodicities shown by phenomena linked to solar activity such as coronal hole area, radio emission in the 10.7 cm band and sunspots. We use the wavelet method that gives information in the frequency and time domains. Of particular interest are the mid-term periodicities (1–2 yrs). Over the whole period, coronal holes and radio variations show an important annual variation and a quasi-biannual periodicity. The increase in these variations is most important around the years of maximum solar activity. When the time series are separated in low and high frequencies, the latter are modulated by the general solar cycle. Although somewhat shifted in frequency, these periodicities might well correspond with those found in cosmic ray intensity, solar magnetic flux and other terrestrial and interplanetary phenomena as a wavelet coherence analysis of these series with the solar magnetic flux reveals.  相似文献   

18.
Possible mechanisms of solar–climatic connections, which may be of importance over short and long time intervals, are discussed. The variations of energetic balance of Earth’s climatic system for the last 50 years are estimated. It is ascertained that the imbalance between the flux of solar energy that comes to the Earth and radiates to space is of 0.1% for the last ten years. The significance is analyzed for the possible influence of variations of solar constant upon the energetic balance of the atmosphere.The physical mechanism of the influence of solar activity on climatic characteristics and the atmospheric circulation is suggested and theoretically substantiated. The mechanism is based on the redistribution in lower-troposphere of condensation nuclei by the vertical electric field. This electric field is determined by the ionosphere–Earth electric potential, which in the Polar Regions is controlled not only by tropical thunderstorms and by the galactic cosmic-ray intensity but also by solar cosmic-ray fluxes. The height redistribution in the atmosphere of condensation nuclei with a change of the electric field of the atmosphere is accompanied by a change in total latent heat (phase transition of water vapor), by changes in radiation balance, and by subsequent changes of the thermobaric field of troposphere. The results of analysis of thermobaric field variations for the periods of invasion of abnormally powerful solar cosmic ray fluxes and magnetic storms confirm the reality of manifestation of heliogeophysical disturbances.  相似文献   

19.
Several years ago, the anisotropic diffusion and convective transport accompanied by adiabatic deceleration were considered as the principal means for cosmic ray propagation. Particles of relatively small energies (~ 1 MeV) can propagate along the force lines of the magnetic field without scattering at distances of several astronomical units in the quiet heliosphere. The theory describing the 11-year variation of galactic cosmic ray intensity and the propagation of solar cosmic rays was founded on this basis. However, the anomalies of the 11-year variation of galactic cosmic ray intensity in 1969–1971 revealed the necessity to take into account the influence of the general electromagnetic field of the heliosphere giving rise to a rapid magnetic drift of particles. The particles drift either from the magnetic axis to the ecliptic plane (in the cycle of 1969–1980) or in the opposite direction depending on the sign of the general magnetic field of the sun. The neutral layers along which the drift velocity is comparable to the particle velocity is of great significance. However, in the presence of sector structure, the time of particle propagation along the neutral layer from the boundary of the modulation region to the earth orbit is substantially increased. Thus a marked adiabatic deceleration is here possible. The time delay observed in the recovery of proton intensities at various energies can be explained in terms of a transient phase of the interplanetary field following the polarity reversal.  相似文献   

20.
With decreasing of cosmic ray (CR) intensity caused by increasing of solar activity (SA) or in some short periods of Forbush-decreases, the intensity of secondary CR relativistic electrons decreases and the probability of formation of thunderstorm clouds and discharges between clouds or between clouds and ground is also expected to decrease. This will influence on weather and climate. In this case is very important to have more detail information on the atmospheric electric field distribution in the atmosphere, additional to information what gave now electric field sensors (EFS) only in about one point near the ground. We show that CR not only influenced on atmospheric electric field phenomenon, but can give practically continuous information on the atmospheric electric field distribution in the atmosphere. We extend our theory of CR atmospheric electric field effect on electron–photon, muon and neutron component including different multiplicities. We take into account that about 0.07 of neutron monitor counting rate caused by negative soft muons captured by lead nucleons and formed mesoatoms with generation of several MeV energy neutrons from lead. In this case the neutron monitor or neutron super-monitor works as analyzer that detects muons of only one, negative sign. It is very important because the atmospheric electric field effect have opposite signs for positive and negative muons that main part of this effect in the muon telescope or in ionization chamber is compensated and we can observe only small part of total effect of one sign muons. On the basis of our general theory of CR atmospheric electric field effects with taking into account of negative soft muon acceleration and deceleration in the Earth atmosphere (in dependence of direction and intensity of electric field) we discuss the possibility of existing this effect in CR neutron monitor counting rate and in different multiplicities and calculate the expected effects in dependence of atmospheric electric field distribution in the atmosphere. We show that the comparison of observed effects with theoretically expected will give important information on the value of atmospheric electric field and its distribution in the atmosphere. We consider also the possible influence of secondary relativistic electrons of CR and relativistic electrons precipitated from the Earth’s radiation belts on thunderstorms and lightnings, and through this – on climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号