首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
We review the observations of supernova remnants (SNRs) and pulsar-wind nebulae (PWNe) that give information on the strength and orientation of magnetic fields. Radio polarimetry gives the degree of order of magnetic fields, and the orientation of the ordered component. Many young shell supernova remnants show evidence for synchrotron X-ray emission. The spatial analysis of this emission suggests that magnetic fields are amplified by one to two orders of magnitude in strong shocks. Detection of several remnants in TeV gamma rays implies a lower limit on the magnetic-field strength (or a measurement, if the emission process is inverse-Compton upscattering of cosmic microwave background photons). Upper limits to GeV emission similarly provide lower limits on magnetic-field strengths. In the historical shell remnants, lower limits on B range from 25 to 1000?μG. Two remnants show variability of synchrotron X-ray emission with a timescale of years. If this timescale is the electron-acceleration or radiative loss timescale, magnetic fields of order 1?mG are also implied. In pulsar-wind nebulae, equipartition arguments and dynamical modeling can be used to infer magnetic-field strengths anywhere from ~5?μG to 1?mG. Polarized fractions are considerably higher than in SNRs, ranging to 50 or 60% in some cases; magnetic-field geometries often suggest a toroidal structure around the pulsar, but this is not universal. Viewing-angle effects undoubtedly play a role. MHD models of radio emission in shell SNRs show that different orientations of upstream magnetic field, and different assumptions about electron acceleration, predict different radio morphology. In the remnant of SN 1006, such comparisons imply a magnetic-field orientation connecting the bright limbs, with a substantial density gradient across the remnant.  相似文献   

2.
Emission from astronomical jets extend over the entire spectral band: from radio to the TeV γ-rays. This implies that various radiative processes are taking place in different regions along jets. Understanding the origin of the emission is crucial in understanding the physical conditions inside jets, as well as basic physical questions such as jet launching mechanism, particle acceleration and jet composition. In this chapter I discuss various radiative mechanisms, focusing on jets in active galactic nuclei (AGN) and X-ray binaries (XRB) environment. I discuss various models in use in interpreting the data, and the insights they provide.  相似文献   

3.
About twenty galactic supernova remnants contain, or are suspected to contain, internal neutron stars. These are observed as pulsing sources or through radiation from surrounding synchrotron nebulae. The Crab Nebula is the most famous example. Similar, but less luminous, nebulae have been identified through radio and X-ray morphology and spectra. This review emphasizes the X-ray observations and is based on images obtained with the Einstein Observatory. These images are illustrated for most remnants and some have not been published previously.There is a great variety of observed characteristics. A typical SNR in this class appears as a patchy shell of hot gas with a contribution from an energetic pulsar at the center. Both the luminosity of the shell and the luminosity powered by the pulsar can vary over a wide range. Remnants reviewed range from the Crab, in which the pulsar-powered component is overwhelming, to RCW 103, in which a central object is marginally observed through a bright shell.  相似文献   

4.
The most frequent manifestation of synchrotron nebulae is the radio emission emanating from radio galaxies and supernova remnants. In general the synchrotron spectra of these objects do not extend into optical and x-ray domains presumably because the high energy electrons needed to sustain such emission are too short-lived. In fact, we knew of only one class of objects in which synchrotron nebulae are observed at frequencies above the radio, namely Crab-like supernova remnants (SNR). In these instances, a central pulsar is presumed to continually accelerate electrons up to the requisite energies, thus balancing the high synchrotron loss rate. The first part of this talk will discuss the available x-ray observations of these sources as well as some of the difficulties in their interpretation. The last part of the talk will be concerned with a new class of synchrotron nebulae associated with binary star systems.  相似文献   

5.
We review observations of extended regions of radio emission in clusters; these include diffuse emission in ‘relics’, and the large central regions commonly referred to as ‘halos’. The spectral observations, as well as Faraday rotation measurements of background and cluster radio sources, provide the main evidence for large-scale intracluster magnetic fields and significant densities of relativistic electrons. Implications from these observations on acceleration mechanisms of these electrons are reviewed, including turbulent and shock acceleration, and also the origin of some of the electrons in collisions of relativistic protons by ambient protons in the (thermal) gas. Improved knowledge of non-thermal phenomena in clusters requires more extensive and detailed radio measurements; we briefly review prospects for future observations.  相似文献   

6.
A supernova (SN) explosion drives stellar debris into the circumstellar material (CSM) filling a region on a scale of parsecs with X-ray emitting plasma. The velocities involved in supernova remnants (SNRs), thousands of km?s?1, can be directly measured with medium and high-resolution X-ray spectrometers and add an important dimension to our understanding of the last stages of the progenitor, the explosion mechanism, and the physics of strong shocks. After touching on the ingredients of SNR kinematics, I present a summary of the still-growing measurement results from SNR X-ray observations. Given the advances in 2D/3D hydrodynamics, data analysis techniques, and especially X-ray instrumentation, it is clear that our view of SNRs will continue to deepen in the decades ahead.  相似文献   

7.
X-Rays From Mars     
X-rays from Mars were first detected in July 2001 with the satellite Chandra. The main source of this radiation was fluorescent scattering of solar X-rays in its upper atmosphere. In addition, the presence of an extended X-ray halo was indicated, probably resulting from charge exchange interactions between highly charged heavy ions in the solar wind and neutrals in the Martian exosphere. The statistical significance of the X-ray halo, however, was very low. In November 2003, Mars was observed again in X-rays, this time with the satellite XMM-Newton. This observation, characterized by a considerably higher sensitivity, confirmed the presence of the X-ray halo and proved that charge exchange is indeed the origin of the emission. This was the first definite detection of charge exchange induced X-ray emission from the exosphere of another planet. Previously, this kind of emission had been detected from comets (which are largely exospheres) and from the terrestrial exosphere. Because charge exchange interactions between atmospheric constituents and solar wind ions are considered as an important nonthermal escape mechanism, probably responsible for a significant loss of the Martian atmosphere, X-ray observations may lead to a better understanding of the present state of the Martian atmosphere and its evolution. X-ray images of the Martian exosphere in specific emission lines exhibited a highly anisotropic morphology, varying with individual ions and ionization states. With its capability to trace the X-ray emission out to at least 8 Mars radii, XMM-Newton can explore exospheric regions far beyond those that have been observationally explored to date. Thus, X-ray observations provide a novel method for studying processes in the Martian exosphere on a global scale.  相似文献   

8.
A number of young supernova remnants (SNRs) are now known to have nonthermal X-ray spectra. The steepness of the X-ray emission suggests that it is synchrotron from TeV electrons, and if this is the case, efficient shock acceleration is likely occurring in these objects. Here we use a model of nonlinear diffusive shock acceleration to fit the broad-band emission from SN1006, Tychos, and Keplers SNRs. Our fits confirm that all of these SNRs are producing TeV particles, but also show that the electron and ion spectra do not extend as a power law above a few TeV, well below the cosmic ray `knee at 1015 eV.  相似文献   

9.
Synchrotron radio emission from interstellar space has long been recognized as a useful tool to probe into the galactic distribution of high energy electrons and magnetic fields. We first review the results obtained from the local (<2kpc distant) region of the Galaxy and conclude that the observed local synchrotron emissivity is consistently explained by the measured cosmic ray electron spectrum and the interstellar magnetic field if some reasonable assumptions are allowed. The large scale distribution of radio emissivity shows evidence for spiral structure and is likely to originate in two distinct disk systems: a thin disk (thickness 250 pc in the inner Galaxy) formed by population I objects which emits about 10% of the galactic radio luminosity and a thick disk (2.5 kpc thick in the inner Galaxy) which constitutes the truly diffuse emission and produces 90% of the total luminosity.  相似文献   

10.
Conclusions My aim in this presentation has been to begin the confrontation between models for soft X-ray emission from low-luminosity galactic X-ray sources and currently available data. I have focussed principally on disk population stars, irrespective of spectral type, luminosity class, and age; and have used predictions of source temperatures and variability to distinguish between the various models. Although much remains to be done, I believe it is already possible to state that the X-ray emission characteristics of late and early spectral types, and young and old stars share many similarities, and that an economical explanation is that we are seeing the manifestations of solar coronal surface activity modulated by the stellar parameters which govern stellar magnetic activity (for example, rotation). In some cases (such as for OB stars), a proper theory accounting for the heating of such coronal plasma does not yet exist, but I am confident that the theorists will be up to this challenge.  相似文献   

11.
The existing paradigm of the origin of Galactic cosmic rays places strong supernovae shocks as the acceleration site for this material. However, although the EGRET gamma-ray telescope has reported evidence for GeV gamma rays from some supernovae, it is still unclear if the signal is produced by locally intense cosmic rays. Although non-thermal X-ray emissions have been detected from supernova remnants and interpreted as synchrotron emission from locally intense electrons at energies up to 100 TeV, the inferred source energy spectral slopes seem much steeper than the electron source spectrum observed through direct measurements. It remains the case that simple energetics provide the most convincing argument that supernovae power the bulk of cosmic rays. Two characteristics which can be used to investigate this issue at high energy are the source energy spectra and the source composition derived from direct measurements.  相似文献   

12.
This review summarizes both the direct spacecraft observations of non-relativistic solar electrons, and observations of the X-ray and radio emission generated by these particles at the Sun and in the interplanetary medium. These observations bear on three physical processes basic to energetic particle phenomena: (1) the acceleration of particles in tenuous plasmas; (2) the propagation of energetic charged particles in a disordered magnetic field, and (3) the interaction of energetic charged particles with tenuous plasmas to produce electromagnetic radiation. Because these electrons are frequently accelerated and emitted by the Sun, mostly in small and relatively simple flares, it is possible to define a detailed physical picture of these processes.In many small solar flares non-relativistic electrons accelerated during flash phase constitute the bulk of the total flare energy. Thus the basic flare mechanism in these flares essentially converts the available flare energy into fast electrons. Non-relativistic electrons exhibit a wide variety of propagation modes in the interplanetary medium, ranging from diffusive to essentially scatter-free. This variability in the propagation may be explained in terms of the distribution of interplanetary magnetic field fluctuations. Type III solar radio burst emission is generated by these electrons as they travel out to 1 AU and beyond. Recent in situ observations of these electrons at 1 AU, accompanied by simultaneous observations of the low frequency radio emission generated by them at 1 AU provide quantitative information on the plasma processes involved in the generation of type III bursts.  相似文献   

13.
We review the major advances in understanding the morphologies and kinematics of supernova remnants (SNRs). Simulations of SN explosions have improved dramatically over the last few years, and SNRs can be used to test models through comparison of predictions with SNRs’ observed large-scale compositional and morphological properties as well as the three-dimensional kinematics of ejecta material. In particular, Cassiopeia A—the youngest known core-collapse SNR in the Milky Way—offers an up-close view of the complexity of these explosive events that cannot be resolved in distant, extragalactic sources. We summarize the progress in tying SNRs to their progenitors’ explosions through imaging and spectroscopic observations, and we discuss exciting future prospects for SNR studies, such as X-ray microcalorimeters.  相似文献   

14.
CMEs have been observed for over 30 years with a wide variety of instruments. It is now possible to derive detailed and quantitative information on CME morphology, velocity, acceleration and mass. Flares associated with CMEs are observed in X-rays, and several different radio signatures are also seen. Optical and UV spectra of CMEs both on the disk and at the limb provide velocities along the line of sight and diagnostics for temperature, density and composition. From the vast quantity of data we attempt to synthesize the current state of knowledge of the properties of CMEs, along with some specific observed characteristics that illuminate the physical processes occurring during CME eruption. These include the common three-part structures of CMEs, which is generally attributed to compressed material at the leading edge, a low-density magnetic bubble and dense prominence gas. Signatures of shock waves are seen, but the location of these shocks relative to the other structures and the occurrence rate at the heights where Solar Energetic Particles are produced remains controversial. The relationships among CMEs, Moreton waves, EIT waves, and EUV dimming are also cloudy. The close connection between CMEs and flares suggests that magnetic reconnection plays an important role in CME eruption and evolution. We discuss the evidence for reconnection in current sheets from white-light, X-ray, radio and UV observations. Finally, we summarize the requirements for future instrumentation that might answer the outstanding questions and the opportunities that new space-based and ground-based observatories will provide in the future.  相似文献   

15.
16.
In this paper we review the possible radiation mechanisms for the observed non-thermal emission in clusters of galaxies, with a primary focus on the radio and hard X-ray emission. We show that the difficulty with the non-thermal, non-relativistic Bremsstrahlung model for the hard X-ray emission, first pointed out by Petrosian (Astrophys. J. 557, 560, 2001) using a cold target approximation, is somewhat alleviated when one treats the problem more exactly by including the fact that the background plasma particle energies are on average a factor of 10 below the energy of the non-thermal particles. This increases the lifetime of the non-thermal particles, and as a result decreases the extreme energy requirement, but at most by a factor of three. We then review the synchrotron and so-called inverse Compton emission by relativistic electrons, which when compared with observations can constrain the value of the magnetic field and energy of relativistic electrons. This model requires a low value of the magnetic field which is far from the equipartition value. We briefly review the possibilities of gamma-ray emission and prospects for GLAST observations. We also present a toy model of the non-thermal electron spectra that are produced by the acceleration mechanisms discussed in an accompanying paper Petrosian and Bykov (Space Sci. Rev., 2008, this issue, Chap. 11).  相似文献   

17.
The BL Lac object Mkn 421 was observed by EXOSAT four times over a period of six days in February 1984. Significant X-ray variability was apparent on a timescale of less than a day, but with no accompanying spectral change. The source exhibited a very soft power law X-ray spectrum with an extremely low intrinsic column density (NH1020 cm–2). There was no evidence for an additional hard component attributable to synchrotron self-Compton emission. The observations when combined with other published data imply that significant changes occur in the form of the broad-band UV/X-ray continuum of this source.  相似文献   

18.
Solar flares efficiently accelerate electrons to several tens of MeV and ions to 10 GeV. The acceleration is usually thought to be associated with magnetic reconnection occurring high in the corona, though a shock produced by the Coronal Mass Ejection (CME) associated with a flare can also accelerate particles. Diagnostic information comes from emission at the acceleration site, direct observations of Solar Energetic Particles (SEPs), and emission at radio wavelengths by escaping particles, but mostly from emission from the chromosphere produced when the energetic particles bombard the footpoints magnetically connected to the acceleration region. This paper provides a review of observations that bear upon the acceleration mechanism.  相似文献   

19.
The general picture that emerged by the end of 1990s from a large set of optical and X-ray, spectral and timing data was that the X-rays are produced in the innermost hot part of the accretion flow, while the optical/infrared (OIR) emission is mainly produced by the irradiated outer thin accretion disc. Recent multiwavelength observations of Galactic black hole transients show that the situation is not so simple. Fast variability in the OIR band, OIR excesses above the thermal emission and a complicated interplay between the X-ray and the OIR light curves imply that the OIR emitting region is much more compact. One of the popular hypotheses is that the jet contributes to the OIR emission and even is responsible for the bulk of the X-rays. However, this scenario is largely ad hoc and is in contradiction with many previously established facts. Alternatively, the hot accretion flow, known to be consistent with the X-ray spectral and timing data, is also a viable candidate to produce the OIR radiation. The hot-flow scenario naturally explains the power-law like OIR spectra, fast OIR variability and its complex relation to the X-rays if the hot flow contains non-thermal electrons (even in energetically negligible quantities), which are required by the presence of the MeV tail in Cyg X-1. The presence of non-thermal electrons also lowers the equilibrium electron temperature in the hot flow model to ?100 keV, making it more consistent with observations. Here we argue that any viable model should simultaneously explain a large set of spectral and timing data and show that the hybrid (thermal/non-thermal) hot flow model satisfies most of the constraints.  相似文献   

20.
Until the ULYSSES spacecraft reached the polar regions of the solar wind, the only high-latitude measurements available were from indirect techniques. The most productive observations in regions of the solar wind between 5R and 200R have been the family of radio scattering techniques loosely referred to as Interplanetary Scintillation (IPS) (Coles, 1978). Useful observations can be obtained using a variety of radio sources, for example spacecraft beacons, planetary radar echoes and compact cosmic sources (quasars, active galactic nuclei, pulsars, galactic masers, etc.). However for measurement of the high-latitude solar wind cosmic sources provide the widest coverage and this review will be confined to such observations. IPS observations played a very important role in establishing that polar coronal holes (first observed in soft x-ray emission) were sources of fast solar wind streams which occasionally extend down to the equatorial region and are observed by spacecraft. Here I will review the IPS technique and show the variation of both the velocity and the turbulence level with latitude over the last solar cycle. I will also outline recent work and discuss comparisons that we hope to make between IPS and ULYSSES observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号