首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
超声速喷流问题是一个包含激波、旋涡、湍流和声波的多尺度复杂流动问题,其数值模拟方法及激波噪声产生机制是相关研究的长期热点和难点。本文简要回顾了超声速喷流激波噪声研究进展,重点介绍了针对激波噪声计算方法的非物理噪声消除技术和光滑因子设计准则,针对超声速喷流激波噪声研究设计的模型问题(包括旋涡–旋涡相互作用、激波–旋涡相互作用和激波–剪切层相互作用等),以及轴对称和三维超声速喷流的研究进展。本文还介绍了作者最近针对超声速喷流开展的三维直接数值模拟、实验验证工作和初步分析结果(包括轴对称模态定位、束缚波演化和摆动模态发展等)。  相似文献   

2.
声激励抑制空腔流激振荡的实验研究   总被引:1,自引:0,他引:1  
实验研究了声激励对高速外流下矩形空腔振荡流动的抑制效应。实验发现了空腔流激振荡的主导模态随来流速度的敏感变化现象。通过在空腔前缘加纯音声激励,在M≤0.6的情况下取得了较好的抑制振荡效果。测量了腔口自由剪切层的平均速度型及速度脉动频谱,证实了前缘声激励对自由剪切层内不稳定波的激发作用,探讨了空腔振荡机理及声激励抑制机理。  相似文献   

3.
强声波扰动下旋流流场的动态特征对于理解旋流火焰的非线性响应特性非常重要。基于超高重复频率脉冲串式激光器高速粒子示踪技术测量了强声激励下旋流火焰的动态流场,研究了旋流流场周期性涡结构和流场-火焰动态相互作用。周期性声波扰动会在旋流火焰内剪切层和外剪切层中引起固有涡结构。发现外部涡环在卷曲火焰锋面和改变火焰热量释放速率中起主要作用,而内部涡环分布在火焰根部并会影响中心回流区速度分布。定量提取了声诱导涡环的轨迹、涡量、环量、尺寸、出口速度以及加速度之间关系,发现强声激励下的出口速度和加速度决定了外部涡环的形成和脱落过程。  相似文献   

4.
边界条件对三维空腔流动振荡的影响   总被引:1,自引:0,他引:1  
基于全隐式无分裂方法,数值求解三维非定常雷诺平均的N av ier-S tokes方程,紊流模型采用修正的B-L代数模型。运用此方法,本文数值模拟了三维开式空腔的超声速、跨声速、亚声速流动。研究了空腔口处剪切层的非定常运动现象,着重探讨了入口边界条件对三维空腔流自持性振荡的影响。数值计算结果表明,与层流速度型相比,入口条件为紊流速度型和特征边界型得到的结果能够吻合。  相似文献   

5.
研究了喷口边缘自由剪切层在下游扰流物干涉下产生自激振荡的机理 ,并进行了相应的实验。基于对空腔流自由剪切层自激振荡各阶模态的频率方程的合理改进 ,使之能预测喷口边缘自由剪切层在下游扰流物干涉下所致的自激振荡的模态频率。实验结果表明 ,采用改进后的空腔流自由剪切层自激振荡的频率方程能较好地预测喷口自由剪切层自激振荡所致噪声的优势频率 ,并能用于工程计算。另外 ,作者在考虑声与流动耦合的复杂性时提出 :声压与涡脱落相互作用的力阻抗所致的时延 2 πα中的 α与当地马赫数有关 ,而并非为常数 0 .2 5。声的传播是弹性介质中疏密波的传播 ,脱落涡的传播是流动介质中涡质量的传播 ,声与流动耦合的力阻抗的抗性取决于它们两者在耦合时所占有的主次地位 ,由实验数据表明 ,当 Ma∞ <0 .3 4时 ,力阻抗的抗性会由质量抗转变为弹性抗 ,即 α会由正值变为负值。  相似文献   

6.
本文研究了不同壁面通透率对平面附壁射流动态特性的影响。实验结果表明孔壁减弱、甚至消除了流场中的低频摆动现象。随着孔壁通透率的增加,射流时均附壁点向下游逐渐移动,射流和壁面之间的回流区长度逐渐增大,而射流内侧剪切层内的涡旋与壁面之间的相互作用减小,壁面压强脉动强度变小,附壁射流的动态特性逐渐向自由射流转化。当孔壁通透率为40%左右时,射流与二维平面自由射流类似。距离射流出口不同位置上的壁面脉动压强之间的互谱表明,当孔壁通透率增大以后,射流内侧剪切层中的旋涡向下游传播距离变得更长,传播速度加快,这说明低孔壁通透率情况下的附壁射流中存在的低频摆动现象阻碍了剪切层高频旋涡向下游的发展。  相似文献   

7.
当气流流经空腔结构,由于腔内严重的压力、速度等脉动,会诱发强烈的气动噪声,来流速度较高时,声压级甚至可高达170d B,对空腔自身结构安全构成较大的威胁,研究人员开展了大量的空腔噪声抑制方法研究。采用CFD+CAA的混合方法,对长深比L/D=6的空腔在亚音速条件下的流动进行了仿真研究.通过改变空腔底部声阻抗值,考察不同声阻抗值条件下空腔底面的声压级分布,探讨了不同的声阻抗对空腔气动噪声的抑制效果。研究结果表明:采用声阻抗对空腔内噪声有一定抑制效果;空腔前部区域声压级降低幅度比后部区域大;空腔后缘产生的噪声在向前传播过程中有所衰减。  相似文献   

8.
开口风洞进行气动噪声测量及传声器阵列定位研究时必须考虑开口剪切层对声传播的影响。基于传统的二维剪切层折射修正公式的Snell定律和波传播对流效应,推导了更普遍的三维剪切层折射修正公式。针对0.55m×0.4m开口风洞,首先开展了风洞剪切层形态及位置的测量研究,70m/s风速下,该风洞剪切层略向外扩张,角度为1.14°;其次采用相位相关分析的方法研究了风速30,50和70m/s条件下,不同频段的声波穿过剪切层的折射现象,并与基于剪切层无限薄假设的Amiet等人的理论结果进行了比较,指出了折射角度的理论修正公式只有当声源到剪切层的距离大于4倍的目标声波波长时,即满足远场条件时,才与试验结果接近;最后,将剪切层修正方法应用于基于Beam-forming算法的传声器阵列的声源定位中,结果表明三维剪切层修正方法能够有效提高传声器阵列声源定位的准度。  相似文献   

9.
流动诱导空腔振荡及其声激励抑制的实验研究   总被引:2,自引:1,他引:2  
实验研究了矩形空腔在外部高速气流作用下诱导的空腔内流支振荡问题,以及从空腔前缘加入纯音声激励以抑制空腔内流动振荡技术。实验发现,在一定的气流速度和空腔几何尺寸下,空腔内流动会出现强烈的自持振荡。采用前缘声激励,在某些声激励频率和适当强度下,通过控制腔口前缘剪切层的初期发展,可使原来处于振荡状态下空腔内的脉动压力级峰值降低14dB以上,线性总声压级降低5dB。  相似文献   

10.
采用粒子图像测速技术,研究了当雷诺数Re=4.5×104时低旋流数旋进射流的流动特性。针对3种不同旋流数(S=0、0.26和0.41),对比分析了时均流向速度场、流向速度脉动强度场以及时均涡量场的变化规律。实验测量结果表明:随着旋流数的增加,流向速度大小及其脉动强度沿流向衰减加剧,而射流中心线上的速度脉动强度增强;因腔体壁面空间限制而产生的回流区向上游移动且尺度变小;外剪切层中旋涡的流向发展急剧衰减而内剪切层内的旋涡几乎不受影响。此外,结合速度谱和典型时刻的瞬态流场特征可知,旋流数增大后,旋进频率增大,而旋进现象发生的起始位置向上游移动,使得旋进偏转角度增大。  相似文献   

11.
开口风洞声阵列测量的剪切层修正方法   总被引:1,自引:1,他引:0       下载免费PDF全文
开口风洞中的相位传声器阵列测量,必须进行剪切层修正才能得到真实的噪声源位置信息。在0.55m×0.40m声学风洞中开展了剪切层修正的实验研究,得到了不同风速条件下的剪切层速度剖面、声波传播延迟时间和声源定位的结果。根据实验结果,对剪切层速度剖面的Gortler理论解进行了验证,并对比分析了4种剪切层修正方法。研究结果表明:选择自相似参数σ=9,ξ0=0.2时剪切层速度剖面测量值与理论值符合较好;剪切层厚度与轴向距离的关系为y=0.15x;马赫数Ma≤0.3、测量角θm在40°~140°范围内,不同剪切层修正方法对声波延迟时间计算结果的相对误差在1%以内。提出了射线追踪快速计算方法,该方法较常规射线追踪法的计算速度可提高2个数量级,从而使其适用于声阵列在线测量。  相似文献   

12.
梢涡空化作为一种常见的空化现象,广泛存在于水力机械及船舶推进领域。梢涡空化初生与桨叶梢部的旋涡流动密切相关,因此有必要深入研究梢涡流场,揭示其流动特征与空化的内在联系。基于高时间解析度的层析PIV技术,在高速空泡水洞中对椭圆水翼的近尾迹梢涡流场开展了实验研究。结果表明:梢涡在近尾迹区域内存在明显的摆动现象,未考虑旋涡摆动的时间平均会在时均流场中引入额外的误差,因此在梢涡特性的定量研究中有必要滤除旋涡摆动的影响;在水翼脱落剪切层的作用下,涡核中心两侧的切向速度分布明显不对称,且在剪切层与涡核之间存在高速轴向流动区域;梢涡流场中的湍流脉动能量主要集中在涡核内部,且由法向、展向速度脉动主导。结合前人研究,发现法向、展向速度脉动是涡核内部湍流压力脉动的主要来源。  相似文献   

13.
描述了应用PIV技术在水槽中对边条机翼上旋涡及破裂旋涡流场进行的测量和分析。实验是在北航水槽中进行的。通过PIV技术的测量,揭示了旋涡及破裂旋涡中的非定常特性,这种非定常特性同飞机上机翼、尾翼的抖振密切相关。实验结果表明,对于未破裂的边条涡,存在着两种非定常特性,其一是剪切层中不断地有小涡沿剪切层输运和合并。其二是由一次涡诱导的二次涡与剪切层中的小涡互相诱导引起的非定常现象。对于破裂涡,则发现与未破裂的涡相比,截面上涡量分布的区域突然扩大很多,最大涡量的绝对值也比上游未破裂区截面上的涡量最大值小。此外还发现在涡量分布区域出现反涡量,这同涡破裂后出现涡核螺旋变形有关。对于同一截面处涡量分布是非定常的。  相似文献   

14.
利用粒子图像测速技术(PIV)对雷诺数Re = 4.5×104的低旋流数旋进射流流场进行了实验测量,并利用本征正交分解(POD)方法对测得的流场进行分解,提取流场中含能大尺度结构。针对3种不同旋流数(S = 0、 0.26和0.41),对比分析了POD分解得到的空间模态以及用POD模态重构后的脉动速度场的变化规律。POD分析得到的结果表明:旋进导致流体交替地从腔体一侧沿着壁面流出,从另一侧流入;旋进刚发生时,上游剪切层内的旋涡结构尚未完全破坏,它们会一直向下游发展直至旋进起始点附近后,开始随着主流一起偏转,而下游剪切层内的大尺度结构被完全破坏;随着旋流数的增加,旋进以及射流的自身振荡被加强,从而导致流场结构更加复杂、大尺度旋涡结构被破坏。  相似文献   

15.
超声速自由旋涡气动窗口是利用超声速自由旋涡射流来密封高能激光器低压的激光腔,了解气动窗口的流场结构对提高其气动性能和光学性能是非常重要的。本文采用纳米材料作为示踪粒子,开发了超声速流场的DPIV测试技术,并应用于超声速自由旋涡气动窗口的流动显示和测量。测量的最大流场马赫数为4.21,得到了气动窗口的启动过程和剪切层非线性快速增长的流动图画,获得了超声速自由旋涡射流及其诱导流动的速度场。  相似文献   

16.
为研究煤油燃料矩形截面双模态超燃冲压发动机在不同飞行工况下的流动及燃烧特征,在通过直连式试验验证计算方法的准确性后,对6个不同马赫数及当量比工况进行了三维定常数值模拟,得出了发动机壁面压力、一维质量平均马赫数沿流向的分布规律,分析了各工况下流场中波系结构、释热变化率等特征。研究结果表明:不同工况下发动机明显工作于两类不同的燃烧模态。当发动机处于预燃激波串前传至注油位以前的亚燃模态时,凹槽段波系相对较弱;随着激波串的前移,隔离段中形成明显的分离旋涡结构将燃料卷至上游,部分燃烧在注油位之前已完成;在燃烧室内,分离主要发生于凹槽内部,燃烧释热集中于第一凹槽头部。当发动机处于激波串未前传的超燃模态时,凹槽段波系相对更强,流动参数波动更大,燃烧在注油位以后进行,燃烧室内分离旋涡在流向跨度大,形成从第一凹槽前缘至第二凹槽处的连续流动分离;分离旋涡有助于燃烧向下游传播,因此释热沿流向分布更均匀、更分散。在过渡段诱导流动分离,促使燃烧室内形成大流向跨度的分离旋涡可能有助于燃烧向下游传播,实现分布式释热,避免释热过于集中导致激波串前传。  相似文献   

17.
在来流总温1085K、进口马赫数2.0下开展了煤油燃料超声速燃烧试验,使用高速摄像观测了火焰的形态和结构,采用平面激光诱导荧光技术(PLIF)观测了煤油和OH的分布,结合数值模拟结果分析了燃烧室的火焰稳定机制。测量结果显示:燃烧反应主要发生在射流的下游区域和凹槽区域内,随着燃料当量比的增加,火焰传播角度及火焰向主流的穿透高度增加。数值模拟结果与实验测量吻合较好。火焰稳定机制分析显示:液态煤油喷入燃烧室内,主要分布在下壁面附近的流场中,燃烧产生的高温燃烧产物通过凹槽剪切层与回流区之间的相互作用,进入凹槽并为剪切层中的空气-煤油混合气体提供稳定的热量和中间产物,使得火焰基底能够稳定在剪切层内,并以相对固定的角度向主流流场中传播。  相似文献   

18.
武器内埋是实现战斗机超声速巡航、低可探测性(隐身)等先进技术指标的关键气动布局措施之一。腔内流场结构复杂,在一定条件下存在严重压力脉动,诱发强烈噪声,声压级(SPL)甚至可高达170dB,可能造成结构与内部元器件的破坏,因此空腔噪声与抑制方法成为研究热点之一。为此,对亚、跨声速流动条件(Ma=0.6、0.95和1.2)下有、无斜劈(ramps)时过渡式空腔(长深比L/D=4)气动声学特性开展了风洞试验研究,通过综合对比分析空腔底面中心线上的声压级分布和不同测点的声压频谱(SPFS)特性,探讨了斜劈对空腔气动噪声的抑制效果。研究结果表明,在亚、跨声速条件下,采用前缘斜劈对空腔内噪声有一定抑制效果,使得空腔后部区域声压级降低幅度比前部区域大,同时对空腔前壁以及后壁噪声也有抑制效果,部分典型测点声压频谱曲线上的能量尖峰基本全部被削平,这表明空腔流场已不存在产生自持振荡的流动机制。  相似文献   

19.
空腔内的旋转流动常常涉及二次流、旋涡破裂等复杂问题。在整场流动实验测量中 ,必须长时间保持恒定工况。目前文献中的作法一般是采用高精度的恒温水域 ,但系统复杂、控制精度受限制。笔者介绍了一种根据实测温度调频变速保持实验Re数不变的方法。实验表明 ,该方法简单易行 ,并能将流动在长时间内高精度地保持在同一工况Re数内。最后给出了采用这种方法的整场和旋涡破裂区域内速度分布的LDA测量结果。  相似文献   

20.
位于高速列车车体下部区域的通风口格栅与设备舱壁面构成格栅–空腔结构,列车高速运行时,该结构的流声耦合问题较为突出,有必要深入分析其流声耦合机理。将位于车体下部区域的带格栅裙板简化为带格栅的二维空腔模型(格栅–空腔结构),采用延迟分离涡数值模型(Delayed Detached Eddy Simulation, DDES)研究其气动噪声产生机理、流场和声场特性等。研究结果表明:当列车以400 km/h速度运行时,格栅–空腔结构开口处的剪切振荡较为剧烈,特别是空腔冲击边缘附近区域;基于总声压级的空间、频域分布和湍流压力波数–频率谱,发现形格栅–空腔结构的流场始终处于自激振荡的过渡状态,且各位置的总声压级和波数域上的振荡幅值始终低于V形格栅–空腔结构和半圆环形格栅–空腔结构;对目前常用的半圆环形带格栅裙板考虑通风口的出风作用后,观察到空腔内部的涡团演化明显减缓,直接导致格栅附近的总声压级大幅下降约15 d B,表明出风作用能够显著降低带裙板格栅的近场噪声。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号