首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 656 毫秒
1.
一种离心压气机性能仿真数学模型   总被引:7,自引:1,他引:6  
阐述了一种能够达到设计精度要求的快速简单离心压气机性能仿真数学模型,模型中计及离心压气机内出现的各种损失,采用迭代方法计算几个划分截面上的子午速度。为了保证计算精度,叶轮出口和扩压器间流动划分成多段交错网格进行计算。采用建立的数学模型对 Krain离心压气机叶轮性能进行了模拟,并把计算结果同三维 N-S方程的计算结果进行了比较。结果表明,采用建立的仿真模型能够用来模拟离心压气机叶轮性能,为设计离心压气机提供了一个有利的工具,而且对带有涡轮增压器的内燃机设计具有重要的实际意义。   相似文献   

2.
采用全三维数值计算方法研究了某型组合压气机性能和气动稳定性,通过对比轴流压气机和离心压气机的特性和流场细节,发现两者的特性差别较大:轴流压气机效率较高,总压比较小;工作点位于峰值效率点左侧时随流量的减小,离心压气机总压比和效率略有降低,轴流压气机总压比的增加和效率的降低均非常明显;导致离心压气机效率偏低的主要原因是径向扩压器的总压恢复系数偏小;导致组合压气机失稳的主要原因是轴流第1级转子叶尖和第2-3级静子叶根的泄漏流造成的堵塞。  相似文献   

3.
对某车用增压离心压气机进行了三维数值模拟,研究了离心压气机设计点和不同转速下近喘振点进气流场,基于此提出了离心压气机进气轮盖导叶流场控制措施并进行了验证实验.研究表明:离心压气机近喘振点压力面与吸力面压力差异影响到进气流场,导致进气口轮盖附近出现与叶轮转向相反的切向速度;且从低转速到高转速,该与叶轮转向相反的切向速度逐渐增大;离心压气机设计点进气在叶片压力面和吸力面前分别形成与叶轮转向相反和相同的切向速度区域,该区域不限于轮盖附近.轮盖导叶的流动控制方法可以有效抑制近喘振点切向反速度,实验结果表明,轮盖导叶使得离心压气机整体性能得到了提高,在90000r/min近喘振点压比提高了3.4%,效率提高了3.0%.   相似文献   

4.
以某典型负荷离心压气机径向扩压器为例,采用数值模拟的方法,在级环境下分析了径向扩压器前加载、后加载以及叶根前加载叶尖后加载三种负荷分布对离心压气机总体性能的影响;并通过对比分析扩压器内二次流等参数,讨论了负荷分布影响的内在机制.对比计算结果表明,叶根前加载叶尖后加载的负荷分布形式能够降低扩压器的流动损失,对离心压气机的...  相似文献   

5.
三维环境下离心/斜流压气机二维叶型优化设计   总被引:3,自引:3,他引:0  
陶胜  周正贵  严欣  杨利明  张敏 《航空动力学报》2014,29(12):2965-2972
考虑离心/斜流压气机转子叶片通道内流动的强三维性,提出在三维环境下进行二维叶型优化设计.通过对能量方程中黏性耗散项改进,解决了Denton黏性体积力方法模拟离心/斜流叶轮三维流场效率偏高的不足.将改进流场计算模块与并行遗传算法寻优模块相结合,构成离心/斜流压气机二维叶型优化设计软件.采用所研制的软件,分别对离心叶轮和斜流叶轮叶尖处叶型进行优化设计.优化叶片基本达到目标流量和压比,在整个工作范围内效率都提高明显:在设计点离心叶轮效率由0.938提高到0.947,斜流叶轮效率由0.899提高到0.918.   相似文献   

6.
为了研究分流叶片轮缘进口角的变化对离心压气机级性能的影响,以某小型模型级离心压气机为研究对象,利用数值仿真软件对流场进行了全3维模拟,重点分析其内部流场结构的变化。数值仿真结果表明:分流叶片轮缘进口角对离心压气机性能影响明显,其角度的增加使离心压气机的压比和效率提高,但会缩小离心压气机的稳定工作范围。  相似文献   

7.
低速离心压气机非稳态流和机匣处理的数值分析   总被引:1,自引:3,他引:1       下载免费PDF全文
高鹏  楚武利  杨泳 《推进技术》2007,28(1):32-35
机匣处理能够改善压气机稳定裕度,扩大其稳定工作范围。为了验证并分析其扩稳机理,对带沿气流流向槽的低速离心压气机内部进行了全三维数值模拟,将数值计算结果与实验结果进行了比较,并详细对比分析了实壁机匣和机匣处理后离心压气机转子顶部区域流场结构,以及阐述了机匣处理对叶顶间隙泄漏涡和二次流等非稳态三维紊流流动的影响。  相似文献   

8.
为了研究离心压气机在强脉动背压下的入口流场分布,研制了用于非定常流场测量的全自动二维步进装置。使用该装置结合一维热线风速仪测量了不同脉动频率、时均流量下离心压气机入口非定常流场分布。结果表明:背压脉动时,离心压气机入口速度与气流角在周向及径向分布形态均随背压变化呈大幅周期性振荡,且气流角在叶尖处的变化幅度显著高于叶根处。蜗壳上游周向角区内轴向速度显著低于下游,且该周向畸变强度随频率及时均流量增加而增强。径向气流角最大差异出现在约85%叶高处:小流量时最大气流角差异为8°,大流量时为12°。研究探明了脉动背压工况下离心压气机入口流场的非定常演化规律,为针对实际工况的压气机优化设计理论提供了试验基础。  相似文献   

9.
环型双涵道S形弯管是涡轮风扇发动机中连接风扇和高压压气机的重要部件。采用有限容积法对双涵道S形弯管在不同进气条件下的流场进行了数值研究。计算过程中使用两种不同的湍流模型:标准k-ε模型和雷诺应力模型。通过对比可以发现两种湍流模型的计算结果有着明显的差别,尤其是在存在较强剪切应力的区域。此外,还对不同的进气条件(环形管流和均匀来流)对S弯管流场的影响进行了分析。可以看出,不同进气条件中附面层速度剖面的不同能够影响S弯管中轴向速度的分布与发展。  相似文献   

10.
某小型离心压气机扩稳优化设计   总被引:1,自引:1,他引:0  
针对某小型离心压气机在低转速下失速裕度偏小的问题,对该离心压气机的离心叶轮进行了改型优化设计,以扩大其稳定工作范围.改型设计用的是轴流/离心压气机通用叶片造型设计方法,该方法以二维通流设计计算为基础,配以任意空间曲面造型方法,并通过三维CFD(计算流体动力学)计算检验改型设计的结果.通过修改通流设计控制参数和造型控制参数,成功的实现了对离心压气机子午流道和离心叶轮三维叶片的优化设计.结果表明,对该离心叶轮的改型设计,不仅使失速裕度得到明显提高,满足了设计需求,同时压气机整级的性能也得到了改善.   相似文献   

11.
跨音速离心压气机的现状和发展   总被引:1,自引:1,他引:0  
叙述了国内外跨音离心压气机的发展概况以及内部流场的计算方法和气动设计方法的现状和发展, 提出了作者自己的看法。   相似文献   

12.
涡喷发动机压气机三种 S2 流面计算程序的比较   总被引:4,自引:1,他引:3       下载免费PDF全文
在目前压气机S2流面准三元的工程设计中,广泛采用流函数法、流线曲率和欧拉法三种计算方法。从方程体系、计算方法上进行了比较,同时对某三级轴流压气机进行了校核,并对三种方法的计算结果进行了比较分析,给出了六条相应的结论。但到目前为止,仍没有足够的实验数据表明哪一种方法更好。建议在设计过程中应抓住问题的主要矛盾,灵活运用三种方法分析问题。  相似文献   

13.
针对跨声速轴流压气机转子叶排中的流动,利用高分辨率的三阶NND格式和LU-SGS隐式推进迭代法,建立了孤立转子内三维N-S方程的高分辨率和高效率的数值分析程序。用该程序分别计算了NASA-37跨声速转子,计算结果表明:所建立的孤立转子程序能够较好的模拟轴流压气机叶排内流动情况。数值分析结果与实验吻合较好,从而证明了该程序的有效性。  相似文献   

14.
风扇与轴流离心压气机一体化通流设计方法   总被引:2,自引:2,他引:0  
在叶轮机设计的流线曲率法反问题中,统一了基于圆柱坐标系下流面角γ,λ的和流线准法线上流面角的两种叶片力分解方法,得到了适合于轴流、斜流和离心压气机的动量主控方程.提出一种双涵道叶轮机的一体化通流反问题方法,采用分流机匣变位或者涵道比变化这两种自动调整措施.将流线曲率法应用于双涵道叶轮机加以组合压气机的一体化通流设计.设计了某双涵道、双转子、轴流离心组合的压缩系统,用计算流体动力学(CFD)方法检验了可行性和适应性.讨论了轴向速度比的物理意义及在通道自动调整的轴流级通流设计中的应用,给出相应设计算例.   相似文献   

15.
离心压气机流动控制机匣新型处理方式研究   总被引:2,自引:0,他引:2       下载免费PDF全文
为了提高某带小叶片离心压气机的稳定裕度,采用了新型的机匣处理方式,对机匣处理前后的压气机流场进行了数值模拟分析。计算结果表明:(1)在机匣处理后,离心压气机稳定特性得到一定的改善,失速点向小流量方向拓展,压气机流量裕度在100%设计转速下提高了3.5%,在90%设计转速下提高了2.5%;(2)在机匣处理后,相同流量下的压气机压比特性和效率特性都有一定程度的损失,流量在100%设计转速下小于2.15kg/s,在90%设计转速下小于2.00kg/s时,最大效率分别下降了约1.7%和约2.5%。  相似文献   

16.
黄力希  魏星禄  彭泽琰 《航空动力学报》1988,3(3):219-222,281-282
本文首次以数值计算,理论分析以及试验分析的综合手段探讨叶片端弯的气动机理,分析表明;端弯会导致整个流场再分布,主流场变化可能是影响叶片性能改进的重要因素。  相似文献   

17.
离心压气机管式扩压器研究进展及评述   总被引:2,自引:0,他引:2  
紧凑高效的扩压器设计非常具有挑战性,成为制约高压比离心压气机应用于工程实际的主要技术障碍。管式扩压器是解决高压比离心压气机扩压器设计难题的有效手段。目前管式扩压器已经在国外先进中小型航空发动机中得到了应用,有效地提升了离心压气机性能。本文从管式扩压器设计参数对压气机性能的影响以及管式扩压器内部复杂流动机理研究两个方面对管式扩压器的国内外研究进展进行了回顾,讨论了管式扩压器内部流动机理及其对离心压气机性能的影响,并指出了管式扩压器研究的发展趋势。  相似文献   

18.
《中国航空学报》2020,33(8):2099-2109
Bent inlet pipes are often used in centrifugal compressors due to limited installation space, and an understanding of the effect on compressor stability is essential for safety and durability. This paper firstly investigates flow instability behaviors in two compressors, one with a straight inlet pipe and the other with an S-shaped bent pipe. In detail, it analyzes the resulting flow fields, instability evolution paths and surge boundaries. The results show that the S-shaped pipe obviously affects the flow field at high mass flow rates, while reverse flow mainly influences the flow field at low mass flow rates. Reverse flow first occurs at certain flow passages with a high pressure difference that is predominantly decided by the volute rather than the S-shaped bent pipe. In addition, centrifugal compressors can tolerate reverse flow to some extent so that surge would not occur immediately if reverse flow occurs unless the reverse flow region extends circumferentially and radially to a sufficiently large size. Since the S-shaped pipe is not dominant in the creation and extension of reverse flow, it does not exacerbate the stability of the central compressor to a great extent. Last but not least, the S-shaped pipe is noted to delay the occurrence of surge at 90% rotating speed, which suggests the possibility of improving compressor stability with bent inlet pipes. This result differs from the conventional understanding that inlet distortion usually deteriorates compressor stability and emphasizes the particularity of centrifugal compressors.  相似文献   

19.
基于轴对称的S2流面理论,发展了一套流线曲率通流计算方法.为了提高计算的收敛性、稳定性和计算精度,对求解过程中的流线曲率计算、松弛因子的选取等方面进行了改进;提出了一种简单易行的叶片力的处理方法,使得该方法可以计算叶片排以内的区域;为了计算风扇和轴流、离心以及组合压气机构成的双涵道压缩系统,发展了一种计算速度快、稳定性好的双涵道计算方法.最后将改进的通流计算方法用于一双涵道压缩系统的反设计,验证了其可行性.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号